Shelf-life extension of meat products by cellulose acetate antimicrobial film incorporated with oregano’s essential oil
DOI:
https://doi.org/10.33448/rsd-v10i16.23335Keywords:
Weisella viridescens; Pseudomonas fluorescens; Antimicrobial packaging; Spoilage bacteria.Abstract
This study aimed to apply cellulose acetate (CA) films incorporated with oregano essential oil (OEO) to inhibit bacteria growth associated with spoilage of meat products (Weissella viridescens (microaerophilic) and Pseudomonas fluorescens (aerobic)) and evaluate its effect on the shelf life of vacuum-packed sliced ham (VPSH). CA films were produced using acetone solvent, adding 25, 35, 50, or 75 mg of OEO per film. Antimicrobial activity and mechanical properties of films were determined. CA films in Petri dishes showed a better antimicrobial effect against W. viridescens than P. fluorescens. As VPSH, presents a microaerophilic environment, product shelf life was determined fitting Baranyi and Roberts’ model to W. viridescens’ growth experimental data, at 8 °C. OEO did not modify films’ mechanical properties. Application of the CA film with 75 mg of OEO decreased value of W. viridescens, increased its value, resulting in a ham` shelf-life increased by eight days, demonstrating excellent application potential.
References
Aguirre, A., Borneo, R., & Leon, A.E. (2013). Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience., 1, 2–9. doi: https://doi.org/10.1016/j.fbio.2012.12.001
Aliño, M., Fuentes, A., Fernández-Segovia, I., & Barat, J.M. (2011). Development of a low-sodium ready-to-eat desalted cod. Journal of Food Engineering, 107, 304–310. doi: https://doi.org/10.1016/j.jfoodeng.2011.07.012
Augustin, J., & Carlier, V. (2000). Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including interaction between environmental factors. International Journal of Food Microbiology, 56, 53–70. doi: https://doi.org/10.1016/S0168-1605(00)00224-5
Baranyi, J., & Roberts, T.A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294. doi: https://doi.org/10.1016/0168-1605(94)90157-0
Bressan, M.C., Lodi, F., Ferreira, M.W., Andrade, P.L., Boari, C.A., & Piccoli, R.H. (2007). Influência da embalagem na vida útil de presuntos fatiados. Ciencia e Agrotecnologia 31, 433–438. doi: https://doi.org/10.1590/S1413-70542007000200025
Boskovic, M., Zdravkovic, N., Ivanovic, J., Janjic, J., Djordjevic, J., Starcevic, M., & Baltic, M.Z. (2015). Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some foodborne microorganisms. Procedia Food Science, 5, 18–21. doi: https://doi.org/10.1016/j.profoo.2015.09.005
Boskovic, M., Djordjevic, J., Glisic, M., Ciric, J., Janjic, J., Zdravkovic, … Baltic, M.Z. (2020). The effect of oregano (Origanum vulgare) essential oil on four Salmonella serovars and shelf life of refrigerated pork meat packaged under vacuum and modified atmosphere. Journal of Food Processing and Preservation, 44, 1–15. doi: https://doi.org/10.1111/jfpp.14311
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology, 94, 223–253. doi: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Busatta, C., Mossi, A.J., Rodrigues, M.R.A., Cansian, R.L., & Oliveira, J.V. (2007). Evaluation of Origanum vulgare essential oil as antimicrobial agent in sausage. Brazilian Journal of Microbiology, 38, 610–616. doi: https://doi.org/10.1590/S1517-83822007000400006
Caetano, K.S., Hessel C.T., Tondo, E. C., Flôres, S. H., & Cladera-Olivera, F. (2017). Application of active cassava starch films incorporated with oregano essential oil and pumpkin residue extract on ground beef. Journal of Food Safety, 37, 12355. doi: https://doi.org/10.1111/jfs.12355
Cardoso, L.G., Clay, J., Santos, P., Camilloto, G.P., Miranda, A.L., Druzian, J.I., & Guimarães, A.G. (2017). Development of active films poly (butylene adipate co-terephthalate) – PBAT incorporated with oregano essential oil and application in fish fillet preservation. Industrial Crops & Products journal, 108, 388–397. doi: https://doi.org/10.1016/j.indcrop.2017.06.058
Correa, J.P., Molina, V., Sanchez, M., Kainz, C., Eisenberg, P., & Blanco, M. (2017). Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging and Shelf Life, 11, 31–39. doi: https://doi.org/10.1016/j.fpsl.2016.11.004
Dorman, H.J., & Deans, S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316. doi: https://doi.org/10.1046/j.1365-2672.2000.00969.x
Espitia, P.J.P., Soares, N.F.F., Teófilo, R.F., Coimbra, J.S.R., Vitor, D.M., Batista., R.A. ... Medeiros, E.A.A. (2013). Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94, 199–208. doi: https://doi.org/10.1016/j.carbpol.2013.01.003
Garrido, V., García-Jalón, I., & Vitas, A.I. (2010). Temperature distribution in Spanish domestic refrigerators and its effect on Listeria monocytogenes growth in sliced ready to-eat ham. Food Control, 21, 896–901. doi: https://doi.org/10.1016/j.foodcont.2009.12.007
Jacob, C., Mathiasen, L., & Powell, D. (2010). Designing effective messages for microbial food safety hazards. Food Control, 21, 1–6. doi: https://doi.org/10.1016/j.foodcont.2009.04.011
Jafarzadeh, S., Jafari, S. M., Salehabadi,A., Nafchi, A. M., Uthaya, U. S., & Khalil, H.P.S.A. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology, 100, 262-277. doi: https://doi.org/10.1016/j.tifs.2020.04.017
Jouki, M., Yazdi, F.T., Mortazavi, S.A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19. doi: https://doi.org/10.1016/j.foodhyd.2013.08.030
Kalschne, D.L., Geitenes, S., Veit, M.R., Sarmento, C.M.P., & Colla, E. (2014). Growth inhibition of lactic acid bacteria in ham by nisin: A model approach. Meat Science, 98, 744–752. doi: https://doi.org/10.1016/j.meatsci.2014.07.002
Kapetanakou, A.E., & Skandamis, P.N. (2016). Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Current Opinion in Food Science, 12, 1–12. doi: https://doi.org/10.1016/j.cofs.2016.06.001
Koutsoumanis, K., Lambropoulou, K., & Nychas, G.J.E. (1999). A predictive model for the non-thermal inactivation of Salmonella Enteritidis in a food model system supplemented with a natural antimicrobial. International Journal of Food Microbiology, 49, 63–74. doi: https://doi.org/10.1016/S0168-1605(99)00054-9
Kreyenschmidt, J., Hübner, A., Beierle, E., Chonsch, L., Scherer, A., & Petersen, B. (2010). Determination of the shelf life of sliced cooked ham based on the growth of lactic acid bacteria in different steps of the chain. Journal of Applied Microbiology, 108, 510–520. doi: https://doi.org/10.1111/j.1365-2672.2009.04451.x
Laird, K., & Phillips, C. (2012). Vapour phase: A potential future use for essential oils as antimicrobials? Letters in Applied Microbiology, 54, 169–174. doi:https://doi.org/10.1111/j.1472-765X.2011.03190.x
Lee, J.Y., Garcia, C. V., Shin, G.H., & Kim, J.T. (2019). Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. Lwt - Food Science and Technology, 106, 164–171. doi: https://doi.org/10.1016/j.lwt.2019.02.061
Llana-Ruiz-Cabello, M., Pichardo, S., Bermudez, J.M., Ariza, J.J., Guillamón, E., Aucejo, S., & Cameán, A.M. (2018). Characterization and antimicrobial activity of active polypropylene films containing Oregano essential oil and Allium extract to be used in packaging for meat products. Food Additives and Contaminants: Part A, 35, 782–791. doi: https://doi.org/10.1080/19440049.2017.1422282
Longhi, D.A., Dalcanton, F., Aragão, G.M.F, Carciofi, B.A.M., & Laurindo, J.B. (2013). Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. Journal of Theoretical Biology, 335, 88–96. doi: https://doi.org/10.1016/j.jtbi.2013.06.030
Longhi, D.A., Martins, W.F., Silva, N.B., Carciofi, B.A.M., Aragão, G.M.F., & Laurindo, J.B. (2017). Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions. International Journal of Food Microbiology, 240, 57–62. https://doi.org/10.1016/j.ijfoodmicro.2016.06.042
Longhi, D.A., Silva, N.B., Martins, W.F., Carciofi, B.A.M., Aragão, G.M.F., & Laurindo, J.B. (2018). Optimal experimental design to model spoilage bacteria growth in vacuum-packaged ham. Journal of Food Engineering journal, 216, 20–26. doi: https://doi.org/10.1016/j.jfoodeng.2017.07.031
Marino, M., Bersani, C., & Comi, G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. International Journal of Food Microbiology, 67, 187–95. https://doi.org/10.1016/S0168-1605(01)00447-0
Mataragas, M., Drosinos, E.H., Vaidanis, A., & Metaxopoulos, I. (2006). Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. Journal of Food Science, 71, 157–167. doi: https://doi.org/10.1111/j.1750-3841.2006.00058.x
Menezes, N.M.C., Martins, W.F., Longhi, D.A., & Aragão, G.M.F. (2018). Modeling the effect of oregano essential oil on shelf-life extension of vacuum-packed cooked sliced ham. Meat science, 139, 113–119. doi: https://doi.org/10.1016/j.meatsci.2018.01.017
Munhuweyi, K., Caleb, O.J., Reenen, A.J. Van, & Linus, U. (2018). Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT - Food Science and Technology, 87, 413–422. doi: https://doi.org/10.1016/j.lwt.2017.09.012
Oh, M.H., Park, B.Y., Jo, H., Lee, S., Lee, H., Choi, K.H., & Yoon, Y. (2014). Use of antimicrobial food additives as potential dipping solutions to control Pseudomonas spp. contamination in the frankfurters and ham. Korean Journal for Food Science of Animal Resources. Anim, 34, 591–596. doi: https://doi.org/10.5851/kosfa.2014.34.5.591
Ouattara, B., Simard, R.E., Holley, R.A., Piette, G.J.P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37, 155–162. doi: https://doi.org/10.1016/S0168-1605(97)00070-6
Ouattara, B., Simard, R.E., Piette, G., Begin, A., & Holley, R.A. (2000). Diffusion of Acetic and Propionic Acids from Chitosan-based Antimicrobial Packaging Films. Journal of Food Science, 65, 768–773. doi: https://doi.org/10.1111/j.1365-2621.2000.tb13584.x
Pola, C.C., Medeiros, E.A.A., Pereira, O.L., Souza, V.G.L., Otoni, C.G., Camilloto, G.P., & Soares, N.F.F. (2016). Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packaging and Shelf Life, 9, 69–78. doi: https://doi.org/10.1016/j.fpsl.2016.07.001
Rodríguez, F.J., Torres, A., Peñaloza, Á., Sepúlveda, H., Galotto,M. J., Guarda, A., & Bruna, J. (2014). Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Food Additives & Contaminants: Part A, 31, 37–41. doi: https://doi.org/10.1080/19440049.2013.876105
Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508. https://doi.org/10.1111/j.1365-2672.1996.tb03539.x
Rudaz, C., & Budtova, T. (2013). Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions. Carbohydrate Polymers, 92, 1966–1971. doi: https://doi.org/10.1016/j.carbpol.2012.11.066
Silva, N.B., Longhi, D.A., Martins, W.F., Laurindo, J.B., Aragão, G.M.F., & Carciofi, B.A.M. (2017). Modeling the growth of Lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. International Journal of Food Microbiology, 240, 97–101. doi: https://doi.org/10.1016/j.ijfoodmicro.2016.05.014
Slongo, A.P., Rosenthal, A., Camargo, L.M.Q, Deliza, R., Mathias, S.P., & Aragão, G.M.F. (2009). Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT - Food Science and Technology, 42, 303–306. doi:https://doi.org/10.1016/j.lwt.2008.06.010
Sousa, J.P., Azerêdo, G.A., Araújo Torres, R., Silva Vasconcelos, M.A., Conceição, M.L., & Souza, E.L. (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. International Journal of Food Microbiology, 154, 145–151. doi: https://doi.org/10.1016/j.ijfoodmicro.2011.12.026
Woranuch, S., Yoksan, R., & Akashi, M. (2015). Ferulic acid-coupled chitosan : Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 115, 744–751. doi: https://doi.org/10.1016/j.carbpol.2014.06.074
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Camila Casagrande Paganini; Denise Adamoli Laroque; Bruno Augusto Mattar Carciofi; Gláucia Maria Falcão de Aragão
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.