Prolongación de la vida útil de los productos cárnicos mediante una película antimicrobiana de acetato de celulosa incorporada con aceite esencial de orégano
DOI:
https://doi.org/10.33448/rsd-v10i16.23335Palabras clave:
Weisella viridescens; Pseudomonas fluorescens; Envases antimicrobianos; Bacterias de deterioro.Resumen
El objetivo del trabajo fue aplicar películas de acetato de celulosa (AC) incorporadas con aceite esencial de orégano (OEO) para inhibir el crecimiento de bacterias asociadas al deterioro de productos cárnicos (Weissella viridescens (microaerófila) y Pseudomonas fluorescens (aeróbica)) y evaluar su efecto sobre la vida útil del jamón lonchado al vacío (JLV). Las películas de AC se produjeron con disolvente de acetona, añadiendo 25, 35, 50 o 75 mg de OEO por película. Se determinó la actividad antimicrobiana en fase de vapor y las propiedades mecánicas de las películas. Las películas de AC por métodos de análisis de vapor en placas de Petri mostraron un mejor efecto antimicrobiano contra W. viridescens que contra P. fluorescens. Como la JLV presenta un entorno microaerófilo, la vida útil del producto se determinó ajustando el modelo de Baranyi y Roberts a los datos experimentales de crecimiento de W. viridescens a 8 °C. La OEO no modificó las propiedades mecánicas de las películas. La aplicación de la película de AC con 75 mg de OEO disminuyó el valor μmax de W. viridescens, incrementó su valor , resultando en un aumento de la vida útil del jamón de ocho días, demostrando un excelente potencial de aplicación.
Citas
Aguirre, A., Borneo, R., & Leon, A.E. (2013). Antimicrobial, mechanical and barrier properties of triticale protein films incorporated with oregano essential oil. Food Bioscience., 1, 2–9. doi: https://doi.org/10.1016/j.fbio.2012.12.001
Aliño, M., Fuentes, A., Fernández-Segovia, I., & Barat, J.M. (2011). Development of a low-sodium ready-to-eat desalted cod. Journal of Food Engineering, 107, 304–310. doi: https://doi.org/10.1016/j.jfoodeng.2011.07.012
Augustin, J., & Carlier, V. (2000). Modelling the growth rate of Listeria monocytogenes with a multiplicative type model including interaction between environmental factors. International Journal of Food Microbiology, 56, 53–70. doi: https://doi.org/10.1016/S0168-1605(00)00224-5
Baranyi, J., & Roberts, T.A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23, 277–294. doi: https://doi.org/10.1016/0168-1605(94)90157-0
Bressan, M.C., Lodi, F., Ferreira, M.W., Andrade, P.L., Boari, C.A., & Piccoli, R.H. (2007). Influência da embalagem na vida útil de presuntos fatiados. Ciencia e Agrotecnologia 31, 433–438. doi: https://doi.org/10.1590/S1413-70542007000200025
Boskovic, M., Zdravkovic, N., Ivanovic, J., Janjic, J., Djordjevic, J., Starcevic, M., & Baltic, M.Z. (2015). Antimicrobial activity of thyme (Tymus vulgaris) and oregano (Origanum vulgare) essential oils against some foodborne microorganisms. Procedia Food Science, 5, 18–21. doi: https://doi.org/10.1016/j.profoo.2015.09.005
Boskovic, M., Djordjevic, J., Glisic, M., Ciric, J., Janjic, J., Zdravkovic, … Baltic, M.Z. (2020). The effect of oregano (Origanum vulgare) essential oil on four Salmonella serovars and shelf life of refrigerated pork meat packaged under vacuum and modified atmosphere. Journal of Food Processing and Preservation, 44, 1–15. doi: https://doi.org/10.1111/jfpp.14311
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology, 94, 223–253. doi: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Busatta, C., Mossi, A.J., Rodrigues, M.R.A., Cansian, R.L., & Oliveira, J.V. (2007). Evaluation of Origanum vulgare essential oil as antimicrobial agent in sausage. Brazilian Journal of Microbiology, 38, 610–616. doi: https://doi.org/10.1590/S1517-83822007000400006
Caetano, K.S., Hessel C.T., Tondo, E. C., Flôres, S. H., & Cladera-Olivera, F. (2017). Application of active cassava starch films incorporated with oregano essential oil and pumpkin residue extract on ground beef. Journal of Food Safety, 37, 12355. doi: https://doi.org/10.1111/jfs.12355
Cardoso, L.G., Clay, J., Santos, P., Camilloto, G.P., Miranda, A.L., Druzian, J.I., & Guimarães, A.G. (2017). Development of active films poly (butylene adipate co-terephthalate) – PBAT incorporated with oregano essential oil and application in fish fillet preservation. Industrial Crops & Products journal, 108, 388–397. doi: https://doi.org/10.1016/j.indcrop.2017.06.058
Correa, J.P., Molina, V., Sanchez, M., Kainz, C., Eisenberg, P., & Blanco, M. (2017). Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging and Shelf Life, 11, 31–39. doi: https://doi.org/10.1016/j.fpsl.2016.11.004
Dorman, H.J., & Deans, S.G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316. doi: https://doi.org/10.1046/j.1365-2672.2000.00969.x
Espitia, P.J.P., Soares, N.F.F., Teófilo, R.F., Coimbra, J.S.R., Vitor, D.M., Batista., R.A. ... Medeiros, E.A.A. (2013). Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94, 199–208. doi: https://doi.org/10.1016/j.carbpol.2013.01.003
Garrido, V., García-Jalón, I., & Vitas, A.I. (2010). Temperature distribution in Spanish domestic refrigerators and its effect on Listeria monocytogenes growth in sliced ready to-eat ham. Food Control, 21, 896–901. doi: https://doi.org/10.1016/j.foodcont.2009.12.007
Jacob, C., Mathiasen, L., & Powell, D. (2010). Designing effective messages for microbial food safety hazards. Food Control, 21, 1–6. doi: https://doi.org/10.1016/j.foodcont.2009.04.011
Jafarzadeh, S., Jafari, S. M., Salehabadi,A., Nafchi, A. M., Uthaya, U. S., & Khalil, H.P.S.A. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology, 100, 262-277. doi: https://doi.org/10.1016/j.tifs.2020.04.017
Jouki, M., Yazdi, F.T., Mortazavi, S.A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9–19. doi: https://doi.org/10.1016/j.foodhyd.2013.08.030
Kalschne, D.L., Geitenes, S., Veit, M.R., Sarmento, C.M.P., & Colla, E. (2014). Growth inhibition of lactic acid bacteria in ham by nisin: A model approach. Meat Science, 98, 744–752. doi: https://doi.org/10.1016/j.meatsci.2014.07.002
Kapetanakou, A.E., & Skandamis, P.N. (2016). Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Current Opinion in Food Science, 12, 1–12. doi: https://doi.org/10.1016/j.cofs.2016.06.001
Koutsoumanis, K., Lambropoulou, K., & Nychas, G.J.E. (1999). A predictive model for the non-thermal inactivation of Salmonella Enteritidis in a food model system supplemented with a natural antimicrobial. International Journal of Food Microbiology, 49, 63–74. doi: https://doi.org/10.1016/S0168-1605(99)00054-9
Kreyenschmidt, J., Hübner, A., Beierle, E., Chonsch, L., Scherer, A., & Petersen, B. (2010). Determination of the shelf life of sliced cooked ham based on the growth of lactic acid bacteria in different steps of the chain. Journal of Applied Microbiology, 108, 510–520. doi: https://doi.org/10.1111/j.1365-2672.2009.04451.x
Laird, K., & Phillips, C. (2012). Vapour phase: A potential future use for essential oils as antimicrobials? Letters in Applied Microbiology, 54, 169–174. doi:https://doi.org/10.1111/j.1472-765X.2011.03190.x
Lee, J.Y., Garcia, C. V., Shin, G.H., & Kim, J.T. (2019). Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. Lwt - Food Science and Technology, 106, 164–171. doi: https://doi.org/10.1016/j.lwt.2019.02.061
Llana-Ruiz-Cabello, M., Pichardo, S., Bermudez, J.M., Ariza, J.J., Guillamón, E., Aucejo, S., & Cameán, A.M. (2018). Characterization and antimicrobial activity of active polypropylene films containing Oregano essential oil and Allium extract to be used in packaging for meat products. Food Additives and Contaminants: Part A, 35, 782–791. doi: https://doi.org/10.1080/19440049.2017.1422282
Longhi, D.A., Dalcanton, F., Aragão, G.M.F, Carciofi, B.A.M., & Laurindo, J.B. (2013). Assessing the prediction ability of different mathematical models for the growth of Lactobacillus plantarum under non-isothermal conditions. Journal of Theoretical Biology, 335, 88–96. doi: https://doi.org/10.1016/j.jtbi.2013.06.030
Longhi, D.A., Martins, W.F., Silva, N.B., Carciofi, B.A.M., Aragão, G.M.F., & Laurindo, J.B. (2017). Optimal experimental design for improving the estimation of growth parameters of Lactobacillus viridescens from data under non-isothermal conditions. International Journal of Food Microbiology, 240, 57–62. https://doi.org/10.1016/j.ijfoodmicro.2016.06.042
Longhi, D.A., Silva, N.B., Martins, W.F., Carciofi, B.A.M., Aragão, G.M.F., & Laurindo, J.B. (2018). Optimal experimental design to model spoilage bacteria growth in vacuum-packaged ham. Journal of Food Engineering journal, 216, 20–26. doi: https://doi.org/10.1016/j.jfoodeng.2017.07.031
Marino, M., Bersani, C., & Comi, G. (2001). Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. International Journal of Food Microbiology, 67, 187–95. https://doi.org/10.1016/S0168-1605(01)00447-0
Mataragas, M., Drosinos, E.H., Vaidanis, A., & Metaxopoulos, I. (2006). Development of a predictive model for spoilage of cooked cured meat products and its validation under constant and dynamic temperature storage conditions. Journal of Food Science, 71, 157–167. doi: https://doi.org/10.1111/j.1750-3841.2006.00058.x
Menezes, N.M.C., Martins, W.F., Longhi, D.A., & Aragão, G.M.F. (2018). Modeling the effect of oregano essential oil on shelf-life extension of vacuum-packed cooked sliced ham. Meat science, 139, 113–119. doi: https://doi.org/10.1016/j.meatsci.2018.01.017
Munhuweyi, K., Caleb, O.J., Reenen, A.J. Van, & Linus, U. (2018). Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils. LWT - Food Science and Technology, 87, 413–422. doi: https://doi.org/10.1016/j.lwt.2017.09.012
Oh, M.H., Park, B.Y., Jo, H., Lee, S., Lee, H., Choi, K.H., & Yoon, Y. (2014). Use of antimicrobial food additives as potential dipping solutions to control Pseudomonas spp. contamination in the frankfurters and ham. Korean Journal for Food Science of Animal Resources. Anim, 34, 591–596. doi: https://doi.org/10.5851/kosfa.2014.34.5.591
Ouattara, B., Simard, R.E., Holley, R.A., Piette, G.J.P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37, 155–162. doi: https://doi.org/10.1016/S0168-1605(97)00070-6
Ouattara, B., Simard, R.E., Piette, G., Begin, A., & Holley, R.A. (2000). Diffusion of Acetic and Propionic Acids from Chitosan-based Antimicrobial Packaging Films. Journal of Food Science, 65, 768–773. doi: https://doi.org/10.1111/j.1365-2621.2000.tb13584.x
Pola, C.C., Medeiros, E.A.A., Pereira, O.L., Souza, V.G.L., Otoni, C.G., Camilloto, G.P., & Soares, N.F.F. (2016). Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packaging and Shelf Life, 9, 69–78. doi: https://doi.org/10.1016/j.fpsl.2016.07.001
Rodríguez, F.J., Torres, A., Peñaloza, Á., Sepúlveda, H., Galotto,M. J., Guarda, A., & Bruna, J. (2014). Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging. Food Additives & Contaminants: Part A, 31, 37–41. doi: https://doi.org/10.1080/19440049.2013.876105
Ross, T. (1996). Indices for performance evaluation of predictive models in food microbiology. Journal of Applied Bacteriology, 81, 501–508. https://doi.org/10.1111/j.1365-2672.1996.tb03539.x
Rudaz, C., & Budtova, T. (2013). Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions. Carbohydrate Polymers, 92, 1966–1971. doi: https://doi.org/10.1016/j.carbpol.2012.11.066
Silva, N.B., Longhi, D.A., Martins, W.F., Laurindo, J.B., Aragão, G.M.F., & Carciofi, B.A.M. (2017). Modeling the growth of Lactobacillus viridescens under non-isothermal conditions in vacuum-packed sliced ham. International Journal of Food Microbiology, 240, 97–101. doi: https://doi.org/10.1016/j.ijfoodmicro.2016.05.014
Slongo, A.P., Rosenthal, A., Camargo, L.M.Q, Deliza, R., Mathias, S.P., & Aragão, G.M.F. (2009). Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT - Food Science and Technology, 42, 303–306. doi:https://doi.org/10.1016/j.lwt.2008.06.010
Sousa, J.P., Azerêdo, G.A., Araújo Torres, R., Silva Vasconcelos, M.A., Conceição, M.L., & Souza, E.L. (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. International Journal of Food Microbiology, 154, 145–151. doi: https://doi.org/10.1016/j.ijfoodmicro.2011.12.026
Woranuch, S., Yoksan, R., & Akashi, M. (2015). Ferulic acid-coupled chitosan : Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 115, 744–751. doi: https://doi.org/10.1016/j.carbpol.2014.06.074
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Camila Casagrande Paganini; Denise Adamoli Laroque; Bruno Augusto Mattar Carciofi; Gláucia Maria Falcão de Aragão
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.