Cluster analysis of risk factors for chronic non-communicable diseases in elderly Brazilians: population-based cross-sectional studies in a rural town




Aged; Cluster analyses; Epidemiology; Health behavior; Risk factors.


Negative health behaviors incorporated into lifestyle are considered the main risk factors for chronic non-communicable diseases (NCDs) in adults and the elderly. However, the relationship between the aggregation of these factors and the sociodemographic conditions of the elderly needs to be better elucidated. The aim of this study was to analyze the simultaneity of the five risk factors for NCDs in the elderly with low economic status living in a rural city in Brazil, and their association with sociodemographic variables. Cross-sectional study was conducted with elderly people from Family Health Units of the city of Ibicui-Bahia, Brazil, where 310 elderly were enrolled. Rates of physical inactivity in leisure (PIL), alcohol consumption, sedentary behavior, overweight/obesity and tobacco consumption were collected through a questionnaire in an individual interview. The average age among participants was 71.62 (± 8.16) years. The group presenting the five behaviors had high scores in both sexes (men O/E = 242.5; women O/E = 161.7). Among men and women, the highest scores found through clustering of simultaneous NCD risk factors were for the consumption of alcohol with smoking, and physical inactivity with smoking. When analyzing the association between groups and sociodemographic characteristics, men were more physically inactive than women (OR = 0.96, CI = 0.92-0.98) and concomitantly had unhealthy habits (smoking). In conclusion, the elderly are exposed to health risk factors for concurrent CNCDs and the accumulation of these risk factors was not associated with sociodemographic variables, it is suggested that further studies be carried out with the prevalent variables as well as to analyze why the elderly population presents these levels.


Bennett, E. J., Stevens, G. A., Mathers, C. D., Bonita, R., Rehm, J., Kruk, L. M., Dain, K., Kengne, A. P., Chalkidou, K., Beaglev, J., Kishore, S. P., Chen, W., Saxena, S., Bettcher, D. W., Grove, J. T., Beaglehole, R., & Ezzati, M. (2018). NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 22;392(10152):1072-88.

Bertram, M. Y., Sweeny, K., Lauer, J. A., Chisholm, D., Sheehan, P., Rasmussen, B., Upreti, S. R., Dixit, L. P., George, K., & Deane, S. (2018). Investing in non-communicable diseases: an estimation of the return on investment for prevention and treatment services. The Lancet, 391(10134), 2071–2078.

Bloom, D. E., Chatterji, S., Kowal, P., Lloyd-Sherlock, P., McKee, M., Rechel, B., Rosenberg, L. & Smith, P. J. (2015). Macroeconomic implications of population ageing and selected policy responses. Lancet. 14, 385(9968): 649–657.

Brandão, T. L., Lago, K. N., Rocha, S. V. (2019) Sedentary behavior and functional disability in the elderly with low economic status: Monidi Study. Rev. bras. cineantropom. desempenho hum 21. 21: e55944.

Brazil. Decreto n. 8,166 de 23 de dezembro de 2013. Planalto do Governo.

Brazil. Vigitel Brasil 2018: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2018. Brasília: Ministério da Saúde.

Chou, K. L. (2008). The prevalence and clustering of four major lifestyle risk factors in Hong Kong Chinese older adults. Journal of Aging and Health, 20(7), 788–803.

Costa, F. F., Benedet J., Leal D. B. & Assis M. A. (2013). Clustering of risk factors for non-communicable diseases in adults from Florianopolis SC. Rev Bras Epidemiol, 16(2), 398–408.

da Cruz, M. F., Ramires, V. V., Wendt, A., Mielke, G. I., Martinez-Mesa, J., & Wehrmeister, F. C. (2017). Simultaneity of risk factors for chronic non-communicable diseases in the elderly in Pelotas, Rio Grande do Sul State, Brazil. Cadernos de Saude Publica, 33(2).

Figueiró, T. H., Arins, G. C. B., dos Santos, C. E. S., Cembranel, F., de Medeiros, P. A., d’Orsi, E., & Rech, C. R. (2019). Association of objectively measured sedentary behavior and physical activity with cardiometabolic risk markers in older adults. PLoS ONE, 14(1), 1–15.

Galán, I., Rodríguez-Artalejo, F., Tobías, A., Díez-Gañán, L., Gandarillas, A., & Zorrilla, B. (2005). Clustering of behavior-related risk factors and its association with subjective health. Gaceta Sanitaria / S.E.S.P.A.S, 19(5), 370–378.

Gibson, R. S. (1990) Anthropometric reference data. In: Gibson RS. Principles of nutritional assessment. New York: Oxford University Press; Pt.12. p.20946.

IBGE. Ibicuí. (2018)

IBGE. Tabela 2010-2060 - Projeção da População (2018)

Lipschitz, D. A. (1994) Screening for nutritional status in the elderly. Prim Care, 21(1):55-67.

Matsudo, S., Araújo, T., Matsudo, V., Andrade, D., Andrade, E., Oliveira, L. C., & Braggion, G. (2012). Questionário internacional de atividade física (ipaq): estudo de validade e reprodutibilidade no brasil. Revista Brasileira De Atividade Física &Amp; Saúde, 6(2), 5–18.

Meader, N., King, K., Moe-Byrne, T., Wright, K., Graham, H., Petticrew, M., Power, C., White, M., & Sowden, A. J. (2016). A systematic review on the clustering and co-occurrence of multiple risk behaviours. BMC Public Health, 16(1), 1–9.

Muniz, L. C., Schneider, B. C., Silva, I. C., Matijasevich, A., & Santos, I. S. (2012). Accumulated behavioral risk factors for cardiovascular diseases in Southern Brazil. Rev Saude Publica Jun;46(3):534-42. 10.1590/s0034-89102012005000021

Nascimento, R. A. S., Batista, R. T. S., Rocha, S. V., Vasconcelos, L. R. C. (2015). Prevalence and factors associated with the decline in the elderly with cognitive low economic condition: MONIDI study. J. bras. psiquiatr. 64 (3).

Noble, N., Paul, C., Turon, H., & Oldmeadow, C. Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical activity ('SNAP') health risk factors. (2015). Prev Med, 81:16-41.

Nunes, H. E. G., Gonçalves, E. C. A., Vieira, J. A. J., & Silva, D. A. S. (2016). Clustering of risk factors for non-communicable diseases among adolescents from Southern Brazil. PLoS One, 11(7): e0159037.

Oliveira, A. S. D., Moreira, N. F., Moraes, A. B., V., Pereira, R. A., & Veiga, G. V. (2017). Co-occurrence of behavioral risk factors for chronic non-communicable diseases in adolescents: prevalence and associated factors. Rev Nutr, 201;30(6):747-58.

Pedreira, R. B. S., Rocha, S. V., Santos, C. A., Vasconcelos L. R. C., & Reis, M. C. (2016). Content validity of the Geriatric Health Assessment Instrument. Einstein (São Paulo), 14(2):158-77. 10.1590/S1679-45082016AO3455

Pitanga, F. J., & Lessa, I. (2005). Prevalência e fatores associados ao sedentarismo no lazer em adultos. Cad Saude Publica, 21(3):870-7.

Poortinga, W. (2007). The prevalence and clustering of four major lifestyle risk factors in an English adult population. Preventive Medicine, 44(2), 124–128.

Ricardo, C. Z., Azeredo, C. M., Rezende, L. F. M., & Levy, R. B. (2019). Co-occurrence and clustering of the four major non-communicable disease risk factors in Brazilian adolescents: analysis of a national school-based survey. PLoS One, 14(7): e0219370.

Silva, V. S., Souza, I., Silva, D. A. S., Barbosa, A. R., Fonseca, M. J. M. (2018). Tendências e associação do IMC entre variáveis sociodemográficas e de condições de vida em idosos brasileiros: 2002 / 03-2008 / 09. Ciênc. saúde colet, 23 (3).

Schuit, A. J., van Loon, A. J., Tijhuis, M., & Ocké, M. (2002). Clustering of Lifestyle Risk Factors in a General Adult Population. Prev Med, 35(3):219-24. 10.1006/pmed.2002.1064

Silva, D. A. S., Peres, K. G., Boing, A. F., González-Chica, D. A., & Peres, M. A. (2013) Clustering of risk behaviors for chronic noncommunicable diseases: a population-based study in southern Brazil. Prev Med, 56(1):20-4. 10.1016/j.ypmed.2012.10.022

Tassitano, R. M., Dumith, S. C., Chica, D. A. G., & Tenório, M. C. M. (2014). Aggregation of the four main risk factors to non-communicable diseases among adolescents. Rev Bras Epidemiol, 17(2):465-78.

United Nations. (2015). World Population Prospects: the 2015 revision. UN

World Health Organization. Noncommunicable diseases country profiles. (2018). WHO

Williams, J., Allen, L., Wickramasinghe, K., Mikkelsen, B., Roberts, N., & Townsend, N. (2018). A systematic review of associations between non-communicable diseases and socioeconomic status within low- and lower-middle-income countries. Journal of global health, 8(2), 020409.

Xiao, L., Le Cai, Cui W., Wang, X., Hui-fang, L., Jian-hui H., & Golden, A. R. (2020). Association of socioeconomic and lifestyle factors with chronic non-communicable diseases and multimorbidity among the elderly in rural southwest China. Journal of Public Health, 26;42(2):239-246. 10.1093/pubmed/fdz020




How to Cite

ROCHA, S. V. .; OLIVEIRA, S. C. de .; MUNARO, H. L. R. .; SQUARCINI, C. F. R. .; FERREIRA, B. M. P. .; MENDONÇA, F. de O. .; SANTOS, C. A. dos . Cluster analysis of risk factors for chronic non-communicable diseases in elderly Brazilians: population-based cross-sectional studies in a rural town. Research, Society and Development, [S. l.], v. 10, n. 17, p. e18101724202, 2021. DOI: 10.33448/rsd-v10i17.24202. Disponível em: Acesso em: 17 jan. 2022.



Health Sciences