Extraction methods, composition and biological activity of polysaccharides from Arctium lappa L. – Short review
DOI:
https://doi.org/10.33448/rsd-v10i17.24283Keywords:
Polysaccharides; Structural characterization; Arctium lappa L.; Biological activity.Abstract
Since the end of the 20th century, the population exhibits health-related concerns, resulting in a trend towards the search for healthier foods with a focus on functional foods. Research has highlighted ingredients that when incorporated into the food make it functional, together with the benefits of this application in the characteristics of the final product. Polysaccharides are examples of functional ingredients that can collaborate with the texture of food products, as they demonstrate good emulsifying and thickening effects. Burdock polysaccharides (ALPS), a perennial plant that has a high medicinal value, have been evaluated in some studies for their potential as a beneficial ingredient for health, but few studies have evaluated their functionality for future applications as a thickener. Thus, this review aimed to present the different extraction methods, the composition of monosaccharides, the structural characteristics and biological activities of ALPS in order to provide information in a condensed way for future studies.
References
Carlotto, J., Souza, L. M., Baggio, C. H., Werner, M. F. de P., Maria-Ferreira, D., Sassaki, G. L., Iacomini, M., & Cipriani, T. R. (2016). Polysaccharides from Arctium lappa L.: Chemical structure and biological activity. International Journal of Biological Macromolecules, 91, 954–960. https://doi.org/10.1016/j.ijbiomac.2016.06.033.
Chan, Y.-S., Cheng, L.-N., Wu, J.-H., Chan, E., Kwan, Y.-W., Lee, S. M.-Y., Leung, G. P.-H., Yu, P. H.-F., & Chan, S.-W. (2011). A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology, 19(5), 245–254. https://doi.org/10.1007/s10787-010-0062-4.
Chang, H.-J., Huang, W.-T., Tsao, D.-A., Huang, K.-M., Lee, S.-C., Lin, S.-R., Yang, S.-C., & Yeh, C.-S. (2009). Identification and authentication of burdock (Arctium lappa Linn) using PCR sequencing. Fooyin Journal of Health Sciences, 1(1), 28–32. https://doi.org/10.1016/S1877-8607(09)60005-9.
Chen, H., Zeng, J., Wang, B., Cheng, Z., Xu, J., Gao, W., & Chen, K. (2021). Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydrate Polymers, 266, 118149. https://doi.org/10.1016/j.carbpol.2021.118149.
Chen, M., Xu, J., Wang, Y., Wang, Z., Guo, L., Li, X., & Huang, L. (2020). Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis. Carbohydrate Research, 494, 108055. https://doi.org/10.1016/j.carres.2020.108055.
Chen, X., Wang, Z., & Kan, J. (2021). Polysaccharides from ginger stems and leaves: Effects of dual and triple frequency ultrasound assisted extraction on structural characteristics and biological activities. Food Bioscience, 42, 101166. https://doi.org/0.1007/s11694-021-01159-3.
D’yakova, N. A., Samylina, I. A., Slivkin, A. I., Gaponov, S. P., & Myndra, A. A. (2015). Development and validation of an express method for assay of water-soluble polysaccharides in common burdock (Arctium lappa L.) Roots. Pharmaceutical Chemistry Journal, 49(9), 620–623. https://doi.org/10.1007/s11094-015-1340-7.
Delattre, C., Fenoradosoa, T. A., & Michaud, P. (2011). Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Brazilian Archives of Biology and Technology, 54(6), 1075–1092. https://doi.org/10.1590/S1516-89132011000600002.
Esmaeili, F., Hashemiravan, M., Eshaghi, M. R., & Gandomi, H. (2021). Optimization of aqueous extraction conditions of inulin from the Arctium lappa L. roots Using ultrasonic irradiation frequency. Journal of Food Quality, 2021. https://doi.org/10.1155/2021/5520996.
Fournière, M., Bedoux, G., Lebonvallet, N., Leschiera, R., Goff-Pain, L., Bourgougnon, N., & Latire, T. (2021). Poly-and oligosaccharide Ulva sp. Fractions from enzyme-assisted extraction modulate the metabolism of extracellular matrix in human skin fibroblasts: Potential in anti-aging dermo-cosmetic applications. Marine Drugs, 19(3), 156. https://doi.org/10.3390/MD19030156.
Fu, Y.-L. (2009). Isolation, purification, and structural elucidation of a fructan from Arctium lappa L. Journal of Medicinal Plants Research, 3(3), 171–173.
Jiang, Y., Yu, J., Li, Y., Wang, L., Hu, L., Zhang, L., & Zhou, Y. (2019). Extraction and antioxidant activities of polysaccharides from roots of Arctium lappa L. International Journal of Biological Macromolecules, 123, 531–538. https://doi.org/10.1016/j.ijbiomac.2018.11.087.
Kardošová, A., Ebringerová, A., Alföldi, J., Nosál’ová, G., Fraňová, S., & Hřı́balová, V. (2003). A biologically active fructan from the roots of Arctium lappa L., var. Herkules. International Journal of Biological Macromolecules, 33(1–3), 135–140. https://doi.org/10.1016/S0141-8130(03)00079-5.
Lee, N. Y., Lee, J. W., & Jo, C. (2010). Effects of γ-irradiation on the biological activity of burdock (Arctium lappa L.) extracts. Food Science and Biotechnology, 19(1), 165–173. https://doi.org/0.1007/s10068-010-0023-0.
Li, D., Kim, J. M., Jin, Z., & Zhou, J. (2008). Prebiotic effectiveness of inulin extracted from edible burdock. Anaerobe, 14(1), 29–34. https://doi.org/10.1016/j.anaerobe.2007.10.002.
Li, H.-Y., Yi, Y.-L., Guo, S., Zhang, F., Yan, H., Zhan, Z.-L., Zhu, Y., & Duan, J.-A. (2022). Isolation, structural characterization and bioactivities of polysaccharides from Laminaria japonica: A review. Food Chemistry, 131010. https://doi.org/10.1016/j.foodchem.2021.131010.
Li, K., Zhu, L., Li, H., Zhu, Y., Pan, C., Gao, X., & Liu, W. (2019). Structural characterization and rheological properties of a pectin with anti-constipation activity from the roots of Arctium lappa L. Carbohydrate Polymers, 215, 119–129. https://doi.org/10.1016/j.carbpol.2019.03.051.
Li, L., Qiu, Z., Dong, H., Ma, C., Qiao, Y., & Zheng, Z. (2021). Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from the roots of Arctium lappa L.: A comparison. International Journal of Biological Macromolecules, 182, 187–196. https://doi.org/10.1016/j.ijbiomac.2021.03.177.
Li, X., Zhao, Z., Kuang, P., Shi, X., Wang, Z., & Guo, L. (2019). Regulation of lipid metabolism in diabetic rats by Arctium lappa L. polysaccharide through the PKC/NF-κB pathway. International Journal of Biological Macromolecules, 136, 115–122. https://doi.org/10.1016/j.ijbiomac.2019.06.057.
Lianfu, Z., & Zelong, L. (2008). Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry, 15(5), 731–737. https://doi.org/10.1016/j.ultsonch.2007.12.001.
Liu, D., Tang, W., Yin, J.-Y., Nie, S.-P., & Xie, M.-Y. (2021). Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocolloids, 106641. https://doi.org/10.1016/j.foodhyd.2021.106641.
Liu, Y.-G., Hao, C., Shi, S., Dang, K., Huang, X., Zhao, Z., & Shi, X. (2021). Transcriptome analysis of the immunomodulation by Arctium lappa L. polysaccharides in the Chinese mitten crab Eriocheir sinensis against Aeromonas hydrophila. Aquaculture, 534, 736255. https://doi.org/10.1016/j.aquaculture.2020.736255.
Lou, Z., Wang, H., Wang, D., & Zhang, Y. (2009). Preparation of inulin and phenols-rich dietary fibre powder from burdock root. Carbohydrate Polymers, 78(4), 666–671. https://doi.org/10.1016/j.carbpol.2009.05.029.
Ma, F., Wang, D., Zhang, Y., Li, M., Qing, W., Tikkanen-Kaukanen, C., Liu, X., & Bell, A. E. (2018). Characterisation of the mucilage polysaccharides from Dioscorea opposita Thunb. with enzymatic hydrolysis. Food Chemistry, 245, 13–21. https://doi.org/10.1016/j.foodchem.2017.10.080.
Martinez-Guerra, E., & Gude, V. G. (2014). Synergistic effect of simultaneous microwave and ultrasound irradiations on transesterification of waste vegetable oil. Fuel, 137, 100–108. https://doi.org/10.1016/j.fuel.2014.07.087.
Milani, E., Koocheki, A., & Golimovahhed, Q. A. (2011). Extraction of inulin from Burdock root (Arctium lappa) using high intensity ultrasound. International Journal of Food Science & Technology, 46(8), 1699–1704. https://doi.org/10.1111/j.1365-2621.2011.02673.x.
Moro, T. M. A., & Clerici, M. T. P. S. (2020). Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. Food Research International, 141, 109889. https://doi.org/10.1016/j.foodres.2020.109889.
Olennikov, D. N., & Tankhaev, L. M. (2011). A quantitative assay for total fructans in burdock (Arctium spp.) roots. Russian Journal of Bioorganic Chemistry, 37(7), 893–898. https://doi.org/10.1134/S1068162011070181.
Shanshan, W., Meigui, H., Chunyang, L., Zhi, C., Li, C., Wuyang, H., Ying, L., & Jin, F. (2021). Fabrication of ovalbumin-burdock polysaccharide complexes as interfacial stabilizers for nanostructured lipid carriers: Effects of high-intensity ultrasound treatment. Food Hydrocolloids, 111, 106407. https://doi.org/10.1016/j.foodhyd.2021.107172.
Shao, P., Feng, J., Sun, P., Xiang, N., Lu, B., & Qiu, D. (2020). Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International, 137, 109376. https://doi.org/10.1016/j.foodres.2020.109376.
Shen, S., Zhou, C., Zeng, Y., Zhang, H., Hossen, M. A., Dai, J., Li, S., Qin, W., & Liu, Y. (2021). Structures, physicochemical and bioactive properties of polysaccharides extracted from Panax notoginseng using ultrasonic/microwave-assisted extraction. LWT, 154, 112446. https://doi.org/10.1016/j.lwt.2021.112446.
Souza, E. R. L., Gomes, N. M. L., Cruz, J. H. A., Santos, J. F. D., & Oliveira Filho, A. A. (2021). Propriedades farmacológicas do Sesquiterpeno α-Bisabolol: uma breve revisão. Archives of Health Investigation, 10(1), 18–23. https://doi.org/10.21270/archi.v10i1.3183.
Sousa, L. M. M. S., Marques-Vieira, C. M. A., Severino, S. S., & Antunes, A. V. (2017). Metodologia de revisão integrativa da literatura em enfermagem.
Sutovska, M., Nosalova, G., Franova, S., & Kardosova, A. (2007). The antitussive activity of polysaccharides from Althaea officinalis l., var. Robusta, Arctium lappa L., var. Herkules, and Prunus persica L., Batsch. Bratislavske Lekarske Listy, 108(2), 93–99.
Tian, K., Wang, J., Zhang, Z., Cheng, L., Jin, P., Singh, S., Prior, B. A., & Wang, Z.-X. (2019). Enzymatic preparation of fructooligosaccharides-rich burdock syrup with enhanced antioxidative properties. Electronic Journal of Biotechnology, 40, 71–77. https://doi.org/10.1016/j.ejbt.2019.04.009.
Wang, Y., Zhang, N., Kan, J., Zhang, X., Wu, X., Sun, R., Tang, S., Liu, J., Qian, C., & Jin, C. (2019). Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydrate Polymers, 213, 89–99. https://doi.org/10.1016/j.ijbiomac.2019.05.171.
Zhang, N., Wang, Y., Kan, J., Wu, X., Zhang, X., Tang, S., Sun, R., Liu, J., Qian, C., & Jin, C. (2019). In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa. International Journal of Biological Macromolecules, 135, 717–724. https://doi.org/10.1016/j.ijbiomac.2019.05.171.
Zhang, X., Zhang, N., Kan, J., Sun, R., Tang, S., Wang, Z., Chen, M., Liu, J., & Jin, C. (2020). Anti-inflammatory activity of alkali-soluble polysaccharides from Arctium lappa L. and its effect on gut microbiota of mice with inflammation. International Journal of Biological Macromolecules, 154, 773–787. https://doi.org/10.1016/j.ijbiomac.2020.03.111.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Annecler Rech de Marins; Talita Aparecida Ferreira de Campos; Raquel Guttierres Gomes; Andresa Carla Feihrmann; Ivanor Nunes do Prado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.