Lost-wax or laser sintering? Findings on marginal and internal adaptation of metallic copings





Replica Technique; CAD-CAM; Crowns; Marginal adaptation.


Marginal and internal adaptation are parameters of crucial importance to the success of prosthetic crowns. Automatized process creates an expectative of superior or equivalent results compared to restorations manufactured ​​by conventional lost-wax technique. The purpose of this study was to evaluate the marginal adaptation and internal adaptation (cement space) of metal-ceramic crown copings produced by lost-wax (LW) and direct metal laser sintering (DMLS) techniques. An artificial lower first molar was prepared for a full crown, duplicated in plaster and scanned. Twenty metal-ceramic crown copings were fabricated in cobalt-chromium by the two techniques (n=10). The copings were filled with low viscosity silicone and seated on the prepared tooth, resulting in a replica of the internal space. The pellicle formed was embedded in heavy body silicone, sectioned and captured by means of a stereomicroscope at 50x magnification, according to replica technique (RT). Shapiro-Wilk test followed by Holm-Sidak test were used for statistical analysis (α=.05). Marginal adaptation presented no difference between LW (101.5 ± 41.6) and DMLS (86.3 ± 39.9) groups (p=0.24). Conventional LW technique showed significantly lower occlusal (p<0.008) and axial spaces (p<0.03).  Measurements of all regions showed numerically larger adaptation values than that defined during design​​ for DMLS group. Both the LW technique and the DMLS technique are within the clinically acceptable.


Abou Tara, M., Eschbach, S., Bohlsen, F., & Kern, M. (2011). Clinical outcome of metal- ceramic crowns fabricated with laser-sintering technology. International Journal of Prosthodontics, 24(1), 46-8.

Belli, R., Wendler, M., de Ligny, D., Cicconi, M.R., Petschelt, A., Peterlik, H., et al. (2017). Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dental Materials, 331(1), 84-98. 10.1016/j.dental.2016.10.009.

Bergenholtz, G., Cox, C. F., Loesche, W. J., & Syed, S. A. (1982). Bacterial leakage around dental restorations: its effect on the dental pulp. Journal of Oral Pathology, 11(6), 439-50. 10.1111/j.1600-0714.1982.tb00188.x.

Bjorn, A. L., Bjorn, H., & Grkovic, B. (1970). Marginal fit of restorations and its relation to periodontal bone level. II. Crowns. Odontologisk Revy, 21(3), 337-46.

Dahl, B. E., Rønold, H. J. & Dahl, J. E. (2017). Internal fit of single crowns produced by CAD-CAM and lost-wax metal casting technique assessed by the triple-scan protocol. Journal of Prosthetic Dentistry, 117(3), 400-4. 10.1016/j.prosdent.2016.06.017.

Ferrairo, B.M., Piras, F. F., Lima, F. F., Honório, H. M., Duarte, M. A. H., Borges, A. F. S. et al. (2021). Comparison of marginal adaptation and internal fit of monolithic lithium disilicate crowns produced by 4 different CAD/CAM systems. Clinical Oral Investigations., 25(4), 2029-36. 10.1007/s00784-020-03511-1.

Fransson, B., Olio, G. & Gjeitanger, R. (1985). The fit of metal-ceramic crowns: a clinical study. Dental Materials, 1(5):197-9. 10.1016/s0109-5641(85)80019-1.

Gonzalo, E., Suarez, M. J., Serrano, B., & Lozano, J. F. (2009). Comparative analysis of two measurement methods for marginal fit in metal-ceramic and zirconia posterior FPDs. International Journal of Prosthodontics, 22(4), 374–7.

Hamza, T. A., Ezzat, H. A., El-Hossary, M. M., Katamish, H. A., Shokry, T. E., & Rosenstiel, S. F. (2013). Accuracy of ceramic restorations made with two CAD/CAM systems. Journal of Prosthetic Dentistry, 109(2), 83-7. 10.1016/S0022-3913(13)60020-7.

Holmes, J. R., Sulik, W. D., Holland, G. A., & Bayne, S. C. (1992). Marginal fit of castable ceramic crowns. Journal of Prosthetic Dentistry, 67(5):594-9. 10.1016/0022-3913(92)90153-2.

Karlsson, S. (1986). A clinical evaluation of fixed bridges, 10 years following insertion. Journal of Oral Rehabilitation,13(5), 423-32. 10.1111/j.1365-2842.1986.tb01304.x.

Laurent, M., Scheer, P., Dejou, J., & Laborde, G. (2008). Clinical evaluation of the marginal fit of cast crowns-validation of the silicone replica method. Journal of Oral Rehabilitation, 35(2), 116-22. 10.1111/j.1365-2842.2003.01203.x.

Lövgren, N., Roxner, R., Klemendz, S., & Larsson, C. (2017). Effect of production method on surface roughness, marginal and internal fit, and retention of cobalt-chromium single crowns. Journal of Prosthetic Dentistry, 118(1), 95-101. 10.1016/j.prosdent.2016.09.025.

Mai, H. N., Lee, K. E., Lee, K. B., Jeong, S. M., Lee, S. J., Lee, C. H., et al. (2017). Verification of a computer-aided replica technique for evaluating prosthesis adaptation using statistical agreement analysis. Journal of Advanced Prosthodontics, 9(5), 358-63. 10.4047/jap.2017.9.5.358.

McLean, J. M. & Von Fraunhofer, J. A. (1971). The estimation of cement film thickness by an in vivo technique. Brazilian Dental Journal, 131,107-111. 10.1016/j.prosdent.2020.01.012

Molin, M. & Karlsson, S. (1993). The fit of gold inlays and 3 ceramic inlay systems. A clinical and in vitro study. Acta Odontologica Scandinavica, 51(4), 201-6. 10.3109/00016359309040568.

Park, J. Y., Bae, S. Y., Lee, J. J., Kim, J. H., Kim, H. Y., & Kim, W. C. (2017). Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis. Journal of Advanced Prostodontics, 9(3), 159-69. 10.4047/jap.2017.9.3.159

Pjetursson, B. E., Sailer, I., Zwahlen, M. & Hämmerle, C. H. (2007). A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns. Clinical Oral Implants Research,18, 73-85. 10.1111/j.1600-0501.2007.01467.x

Quante, K., Ludwig, K. & Kern, M. (2008). Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dental Materials, 24(10),1311-5. 10.1016/j.dental.2008.02.011.

Ram, S. M., Ranadive, N. N. & Nadgere, J. B. (2019). Microcomputed tomography a noninvasive method to evaluate the fit of a restoration as compared to conventional replica technique. Journal of Indian Prothodontics Society,19(3), 233-9. 10.4103/jips.jips_71_19.

Reich, S., Wichmann, M., Nkenke, E., & Proeschel, P. (2005). Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. European Journal of Oral Sciences, 113(2), 174-9. 10.1111/j.1600-0722.2004.00197.x.

Santos, C., Simba, B. G., Silva, R. R., Rodrigues, M. F. P. A., Magnago, R. O., & Elias, C. N. (2019). Influence of CAD/CAM milling on the flexural strength of Y-TZP dental ceramics. Ceramics International, 45(8), 10250-9. 10.1016/j.ceramint.2019.02.078

Syrek, A., Reich, G., Ranftl, D., Klein, C., Cerny, B., & Brodesser, J. (2010). Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. Journal of Dentistry, 38(7), 553-9. 10.1016/j.jdent.2010.03.015

Tamac, E., Toksavul, S. & Toman, M. (2014). Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. Journal of Prosthetic Dentistry, 112(4), 909-13. 10.1016/j.prosdent.2013.12.020.

Ucar, Y., Akova, T., Akyil, M. S., & Brantley, W. A. (2009). Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. Journal of Prosthetic Dentistry, 102(4), 253-9. 10.1016/S0022-3913(09)60165-7.




How to Cite

AZEVEDO-SILVA, L. J. de; FERRAIRO, B. M.; BERRO-FILHO, R. J.; LIMA, F. F.; RUBO, J. H. Lost-wax or laser sintering? Findings on marginal and internal adaptation of metallic copings. Research, Society and Development, [S. l.], v. 10, n. 17, p. e162101724429, 2021. DOI: 10.33448/rsd-v10i17.24429. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24429. Acesso em: 18 may. 2022.



Health Sciences