Factors related to productivity and persistence of lucerne (Medicago sativa) genotypes with different fall dormancy levels: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24473

Keywords:

Alfalfa; Forage canopy; Phenology; Persistence.

Abstract

The lucerne productive and nutritional potential make it the most used forage legume worldwide. This wide use leads genetic improvement programs to increasingly select the main requirements for a given edaphoclimatic condition. However, in Brazil, the research on genetic improvement of lucerne has been limited over the years, which has hindered the production of this species and the domination of other legumes in animal production, as estilosantes and pigeon pea. This literature review aimed to present results from countries such as New Zealand and Australia that lead the world ranking, as weel as Argentina, in the cultivation of this crop and that can be used as showcase to understand the management of lucerne. From extensive bibliometry analyses in the period between 1963 and 2021, variables as persistence and phyllochron in these countries indicate that it is possible to produce lucerne with similar productivity, longevity and quality in Brazil. Nevertheless, to leverage this production, not only genetic improvement should be aimed, but also research and dissemination of knowledge on the ideal management of defoliation and, mainly, on the choice of the genotype and dormancy level to be cropped by the producer.

References

Avice, J. C. et al. (1996). Nitrogen and carbon flows estimates by 15N e 13C pulse-chase labeling during regrowth of alfalfa. Plant physiology. 290, 112-281, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC157947/pdf/1120281.pdf

Ávila, K. M. S. et al. (2019). Seleção de alfafa (Medicago sativa L.) para tolerância ao alumínio em solução nutritiva. Revista Brasileira de Agropecuária Sustentável, 9(1), 105-111. 10.21206/rbas.v9i1.6279

Baldissera, T. C. et al. (2014). Plant development controls leaf area expansion in alfalfa plants competing for light. Annals of Botany, 113, 145-157. 10.1093/aob/mct251

Barnes, D. K. et al. (1979). Fall dormancy in alfalfa: A valuable predictive tool. In: Barnes, D.K. (ed.) Report of the 26th Alfalfa Improvement Conference, Brookings, South Dakota State University, SD.

Basigalup, D. H. & Ustarroz, E. (2007). Grazing alfalfa systems in the Argentinean pampas. Proceedings..., Monterey, USA. https://alfalfa.ucdavis.edu/+symposium/proceedings/ 2007/07-51.pdf

Benzaghta, M. A. et al. (2021). Aplicações de análise SWOT: uma revisão integrativa da literatura. Journal of Global Business Insights, 6(1), 54-72. 10.5038/2640-6489.6.1.1148.

Berone, G. D., Sardiña, M. C. & Moot, D. J. (2020). Animal and forage responses on lucerne (Medicago sativa L.) pastures under contrasting grazing managements in a temperate climate. Grass and Forage Science, 00, 1-14. 10.1111/gfs.12479.

Botrel, M. A. et al. (2001). Cultivares de alfafa em área de influência da Mata Atlântica no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira, 36(11), 1437-1442. https://www.scielo.br/j/pab/a/Bf6FgFDJwRyMxZvLxgZCqTn/?lang=pt&format=pdf

Bouton, J. H. (2012). Breeding lucerne for persistence. Crop and Pasture Science, 63(2), 95-106. 10.1071/CP12009

Brown, H. E., Moot, D. J. & Pollock, K. M. (2005). Herbage production, persistence, nutritive characteristics and water use of perennial forages grown over 6 years on a Wakanui silt loam. New Zealand Journal of Agricultural Research, v.48, p.423-439. 10.1080/00288233.2005.9513677

Brown, H. E., Moot, D. J. & Teixeira, E. I. (2006). Radiation use efficiency and biomass partitioning of lucerne (Medicago sativa L.) in a temperate climate. European Journal Agronomy, 25, 319-327. 10.1016/j.eja.2006.06.008.

Brummer, E. C., Shah, M. M. & Luth, D. (2000) Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Science, 40, 971-977. 10.2135/cropsci2000.404971x.

Bummer, E. C. (2004). Genomic research in alfalfa, Medicago sativa L. In: Wilson, R.F., Stalker, H.T. & Brummer, C.E. (Ed.). Legume Crop Genomics, AOCS Press, Champaign, Illinois, Chapter 7.

Chen, J. et al. (2013). Effects of cutting on alfalfa yield and quality in Northeast China. Journal of Animal and Veterinary Advances, 12(2), 253-26. https://www.cabdirect.org/ cabdirect/abstract/20133294145

Clark, S. G. et al. (2019). Maximizing lucerne (Medicago sativa L.) production with fixed-length recovery intervals after defoliation in mild winter environments. Journal of Agronomy and Crop Science, 205(1), 88-98. 10.1111/jac.12300

Costa, N. L. et al. (2011). Acúmulo de forragem e eficiência de utilização da radiação em pastagens de Axonopus aureus, durante o período seco, nos cerrados de Roraima. Revista Agro@mbiente On-line, 5(2), 143-147. https://www.alice.cnptia.embrapa.br/bitstream/doc/901802/1/548.pdf

Craig, P. R., Coventry, D. & Edwards, J. H. (2013). Productivity advantage of crop-perennial pasture intercropping in Southern Australia. Agronomy, Soils and Environmental Quality, 105(6), 1588-1596. 10.2134/agronj2013.0196

Cunningham, S. M. & Volenec, J. J. (1997). Seasonal carbohydrates and nitrogen metabolism in roots of contrasting alfalfa (Medicago sativa L.) cultivars. Journal of Plant Physiology, 153(1-2), 220-225. 10.1016/S0176-1617(98)80069-2

Cunningham, S. M. et al. (2001). Winter hardiness, root physiology and gene expression in successive fall dormancy selection of “Mesilla” and “CUF 101” alfalfa. Crop Science, 41, 1091-1098. 10.2135/cropsci2001.4141091x.

Fédière, G. et al. (2003). Record of densoviral diseases occuring among the noctuid populations in lucerne field at El-Bahareya oasis in Egypt. In: Papierok, B. (ed.) (2003). Insect Pathogens and Insects Parasitic Nematodes, IOBC wprs Bulletin, Athens, Greece, 26(1), 237-240.

França, S. et al. (1997). Radiação fotossintéticamente ativa e sua relação com a radiação solar global em dossel de alfafa, em função do índice de área foliar. Revista Brasileira de Agrometeorologia, 5(2), 147-153. http://sbagro.org/files/biblioteca/132.pdf

García, L.A. et al. (2021). Dynamics of aerial and perennial biomass of two lucerne cultivars with different fall dormancies subjected to two severities of cutting during the establishment phase. Revista de la Facultad de Agronomía, 120(1), 1-10. 10.24215/16699513e072

Gastal, F. & Lemaire, G. (2015). Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: review of the underlying ecophysiological process. Agriculture, 5, 1146-1171. 0.3390/agriculture5041146

Gramshaw, D., Lowe, K. F. & Lloyd, D. L. (1993). Effect of cutting interval and winter dormancy on yield, persistence, nitrogen concentration, and root reserves of irrigated lucerne in the Queensland subtropics. Australian Journal of Experimental Agriculture, 33, 847-854. 10.1071/EA9930847.

Haangerson, D. M., Cunningham, S. M. & Volenec, J. J. (2003). Root physiology of less fall dormant, winter hardy alfalfa selections. Crop Science, 43, 1441-1447. 10.2135/cropsci2003.1441.

Han, Q. et al. (2011). Characteristics of endogenous hormone variations in the roots of alfalfa (Medicago sativa L.) cultivars of different fall dormancy during spring regrowth stages. Agriculture Science in China, 10(7), 1032-1040. 10.1016/S1671-2927(11)60091-6

Harvey, B. M., Widdup, K. H. & Barrett, B. A. (2014). An evaluation of lucerne for persistence under grazing in New Zealand. In: Proceedings of…, Alexandra, New Zealand. https://www.nzgajournal.org.nz/index.php/ProNZGA/article/view/2954

Hoppen, S. M. et al. (2019). Shoot and perennial organs yields of lucerne genotypes of three fall dormancy levels over five years. Proceedings of..., Wagga Wagga, Australia. http://agronomyaustraliaproceedings.org/images/sampledata/2019/2019ASA_Hoppen_Sarah_315.pdf

Jáuregui, J. M. et al. (2019). Yield components of lucerne were affected by sowing dates and inoculation treatments. European Journal of Agronomy, 103, 1-12. 10.1016/j.eja.2018.10.005

Kallembach, R. L., Nelson, C. J. & Coutts, J. H. (2002). Yield, quality, and persistence of grazing- and hay-type alfalfa under three harvest frequency. Agronomy Journal, 94, 1094-1103. 10.2134/agronj2002.1094

Lemaire, G. & Chapman, D. (1996). Tissue flows in grazed plant communities. In: Hodgson, J. & Illius, A.W. (Eds.). The ecology and management of grazing systems, CABI, Wallingford, 3-36.

Lemaire, G., Durand, J. L. & Lila, M. (1989). Effet de la sécheresse sur la valeur énergétiwue et azotée de la luzerne (Medicago sativa L.). Agronomie, 9(9), 841-848. https://hal.inrae.fr/hal-02726509

Lemaire, G. & Agnusdei, M. (2000). Leaf tissue turnover and efficiency of herbage utilization. In: Lemaire, G. et al. (Eds.). Grassland Ecophysiology and Grazing Ecology, CABI Publishing, Wallingford, UK, 265–287.

Lemaire, G. et al. (2019). Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agronomy for Sustainable Development¸39-27. 10.1007/s13593-019-0570-6

Li, X. et al. (2015). Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Science, 55, 1995-2011. 10.2135/cropsci2014.12.0834

Liang, S. et al. (2014). Incident Photosynthetic Active Radiation. In: Liang, S. et al. (Eds.). Global Land Surface Satellite (GLASS) Products. Springer, New York. 10.1007/978-3-319-02588-9_6.

Liu, Z. et al. (2016). Autumn dormancy regulates the expression of cas18, vsp and corF genes during cold acclimation of lucerne (Medicago sativa L.). Crop & Pasture Science, 67, 666-678. 10.1071/CP15289

Luo, Y. Z. et al. (2019). Roots of lucerne seedlings are more resilient to water deficit than leaves and stems. Agronomy, 9, 123. 10.3390/agronomy9030123

Maamouri, A. et al. (2017). Performance of lucerne genotypes for biomass production and nitrogen content differs in monoculture and in mixture with grasses and is partially predicted from traits recorded on isolated plants. Crop & Pasture Science, 68(11), 942-951. 10.1071/CP17052

Mattera, J. et al. (2013). Yield components, light interception and radiation use efficiency of Lucerne (Medicago sativa L.) in response to row spacing. European Journal of Agronomy, 45, 87-95. 10.1016/j.eja.2012.10.008

Mitchell, M. L. et al. (2020). Harvest initial affects lucerne (Medicago sativa L.) taproot total yield, starch, nitrogen and water-soluble carbohydrates. Journal of Agronomy, Crop Science, 0, 1-11. 10.1111/jac.12397

Moot, D. J., Teixeira, E. I. & Brown, H. (2012). Alfalfa. In: Steduto, P., et al. (Eds.). Food and Agriculture Organization of the United Nations. Chapter 3, 212-219. Rome, Italy. https://www.fao.org/3/i2800e/i2800e.pdf

Moot, D. J. et al. (2021). Pasture resilience reflects differences in root and shoot responses to defoliation, and water and nitrogen deficits. Journal of New Zealand Grasslands, 17. 10.33584/rps.17.2021.3472

Moraes, A. & Palhano, A. L. (2002). Fisiologia da produção de plantas forrageiras. In: Wachowicz, C. M. & Carvalho, R. N. (Eds.). Fisiologia Vegetal - Produção e Pós-Colheita. 1ed. Curitiba: Champagnat, 1, 249-272. https://www.fcav.unesp.br/Home/departamentos/zootecnia/anaclaudiaruggieri/1.fisiologiaplantas_forrageiras.pdf

Pembletom, K. G., Cunningham, S. M. & Volenec, J. J. (2010). Effects of summer irrigation on seasonal changes in taproot reserves and the expression of winter dormancy/activity in four contrasting lucerne cultivars. Crop & Pasture Science, 61, 873-884, 10.1071/CP10030

Radcliffe, J. E. & Baars, J. A. (1987). The productivity of temperate grasslands. In: Snaydon, R. W. (Eds). Ecosystems of the world. Elsevier Science Publishers, Amsterdam, Netherlands.

Radin, B. et al. (2003). Eficiência no uso de radiação fotossinteticamente ativa pela cultura do tomateiro em diferentes ambientes. Pesquisa Agropecuária Brasileira, 38(9), 1017-1023, 2003. 10.1590/S0100-204X2003000900001

Rassini, J. B. (1999). Alfafa (Medicago sativa L.): estabelecimento e cultivo no Estado de São Paulo. In: BARBOSA, R., et al. (Ed.). Utilização de forrageiras para intensificação da produção de carne e leite. Anais..., EMBRAPA – Pecuária Sudeste, São Carlos, São Paulo, 140. https://www.alice.cnptia.embrapa.br/bitstream/doc/44529/1/ PROCIJBR1999.00071.PDF

Rassini, J. B. et al. (2015). Manejo da forragem. In: Ferreira, R.P., et al. (Ed.). Cultivo e utilização de alfafa na alimentação de vacas leiteiras. EMBRAPA, Brasília, 47-51.

Rimi, F. et al. (2014). Fall dormancy and harvest stage impact on alfalfa persistence in a subtropical climate. Agronomy Journal, 106(4), 1258-1266. 10.2134/agronj13.0495

Saibro, J. C. (1985). Produção de alfafa no Rio Grande do Sul. In: Simpósio sobre manejo de pastagem. Anais..., Piracicaba: FEALQ, 61-106.

Seppänen, M. M. et al. (2018). Growth, freezing tolerance, and yield performance of alfalfa (Medicago sativa L.) cultivars grown under controlled and field conditions in northern latitudes. Canadian Journal of Plant Science, 98, 1109-1118. 10.1139/cjps-2017-0305

Ta, H., Teixeira, E. I. & Moot, D. J. (2016). Impact of autumn (fall) dormancy rating on growth and development of seedling Lucerne. Journal of New Zealand Grasslands, 78, 169-176. http://dspace.lincoln.ac.nz/handle/10182/11511

Ta, H. et al. (2020). Yield and quality changes in lucerne of different fall dormancy rates under three defoliation regimes. European Journal of Agronomy, 115. 10.1016/j.eja.2020.126012

Tabacco, E. et al. (2002). Effect of cutting frequency on dry matter yield and quality of lucerne (Medicago sativa L.) in the Po Valley. Italian Journal of Agronomy, 6(1), 27-33. https://agris.fao.org/agris-search/search.do?recordID=IT2003063362

Teixeira, E. I. et al. (2007a). The dynamics of lucerne (Medicago sativa L.) yields components in response to defoliation frequency. European Journal of Agronomy, 26, 394-400. 10.1016/j.eja.2006.12.005

Teixeira, E. I. et al. (2007b). How does defoliation management impact on yield, canopy forming process and light interception of lucerne (Medicago sativa L.) crops? European Journal of Agronomy, 27, 154-164. 10.1016/j.eja.2007.03.001

Teixeira, E. I., Moot, D. J. & Mickelbart, M. V. (2007). Seasonal patterns of root C and N reserves of lucerne crops (Medicago sativa L.) grown in a temperate climate were affected by defoliation regimes. European Journal of Agronomy, 26, 10-20. 10.1016/j.eja.2006.08.010

Teixeira, E. I., Moot, D. J. & Brown, H. E. (2008). Defoliation frequency and season affected use radiation efficiency and dry matter partitioning to roots of lucerne (Medicago sativa L.) crops. European Journal of Agronomy, 28(2), 103-111. 10.1016/j.eja.2007.05.004

Teixeira, E. I. et al. (2011). Growth and phonological development patterns differ between seedling and regrowth lucerne crop (Medicago sativa L.). European Journal of Agronomy, 35, 47-55. 10.1016/j.eja.2011.03.006

Ventroni, L. M., Volenec, J. J. & Cangiano, C. A. (2010). Fall dormancy and cutting frequency impact on alfalfa yield and yields components. Field Crop Research, 119, 252-259. 10.1016/j.fcr.2010.07.015

Veronesi, F., Brummer, E. C. & Huyghe, C. (2010). Alfalfa. In: Boller, B., Posselt, U. K. & Veronesi, F. (Eds.). Fodder crops and amenity grasses, Handbook of Plant Breeding, 5, Springer, New York. 10.1007/978-1-4419-0760-8_17

Vilela, D. et al. (2008). Prioridades de pesquisa e futuro da alfafa no Brasil. In: FERREIRA, R. D. P. et al (Ed.). Cultivo e utilização de alfafa nos trópicos, São Carlos: EMBRAPA Pecuária Sudeste, 489 p. https://www.alice.cnptia.embrapa.br/bitstream/doc/47404/4/PROCIRPF2008.00235.pdf

Wang, C. et al. (2009). Yields of alfalfa varieties with different fall-dormancy levels in temperate environment. Agronomy Journal, 101(5), 1146-1152. 10.2134/agronj2009.0026

Weller, D. E. (1987). Self-thinning exponent correlated allometric measures of plant geometry. Ecology, 68(4), 813-821. 10.2307/1938352

Xu, H. et al. (2020). Metabolomic analyses reveal substances that contribute to the increased freenzing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biology, 20(15). 10.1186/s12870-019-2233-9

Yang, X. (2020). Modelling phenological development, yield and quality of lucerne (Medicago sativa L.) using APSIM next generation. A thesis submitted in partial fulfillment of the requirement for the Degree of Doctor of Philosophy at Lincoln University, 323p. https://researcharchive.lincoln.ac.nz/handle/10182/13956

Yang, X. et al. (2021). Development of lucerne model in APSIM next generation: 1 phenology and morphology of genotypes with different fall dormancies. European Journal of Agronomy, 130, 126372. 10.1016/j.eja.2021.126372

Yoda, K. (1963). Self-thinning in overcrowded pure stands under cultivate or natural conditions (Intraspecific competitions among higher plants). Journal of the Institute Polytechnic of Osaka, 14, 107-129. https://ci.nii.ac.jp/naid/10030417634/

Downloads

Published

03/01/2022

How to Cite

HOPPEN, S. M.; NERES, M. A. .; MOOT, D. Factors related to productivity and persistence of lucerne (Medicago sativa) genotypes with different fall dormancy levels: a review. Research, Society and Development, [S. l.], v. 11, n. 1, p. e11711124473, 2022. DOI: 10.33448/rsd-v11i1.24473. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24473. Acesso em: 23 apr. 2024.

Issue

Section

Review Article