Factores relacionados con la productividad y longevidad de genotipos de alfalfa (Medicago sativa) con diferentes niveles de latencia: una revisión
DOI:
https://doi.org/10.33448/rsd-v11i1.24473Palabras clave:
Alfafa; Dossel forrajero; Fenología; Persistencia.Resumen
El potencial productivo y nutricional de la alfalfa la convierte en la leguminosa forrajera más utilizada a nivel mundial. Este amplio uso lleva a los programas de mejoramiento genético a seleccionar cada vez más las principales necesidades de una determinada condición edafoclimática. Sin embargo, en Brasil, la investigación sobre el mejoramiento genético de la alfalfa ha sido limitada a lo largo de los años, lo que ha obstaculizado la producción de esta especie y el dominio de otras leguminosas en la producción animal, como el estilo y el gandul. Esta revisión de la literatura tuvo como objetivo presentar resultados de países como Nueva Zelanda y Australia que lideran el ranking mundial, además de Argentina, en el cultivo de esta especie y que puedan ser utilizados como vitrinas para entender el manejo de la alfalfa. A partir de extensos análisis bibliométricos en el período comprendido entre 1963 y 2021, variables como perennidad y filocrón en estos países indican que es posible producir alfalfa con similar productividad, longevidad y calidad en Brasil. Sin embargo, para apalancar esta producción, no solo se debe apuntar al mejoramiento genético, sino también a la investigación y difusión del conocimiento sobre el manejo ideal de la defoliación y, principalmente, sobre la elección del cultivar y nivel de latencia a cultivar por parte del productor.
Citas
Avice, J. C. et al. (1996). Nitrogen and carbon flows estimates by 15N e 13C pulse-chase labeling during regrowth of alfalfa. Plant physiology. 290, 112-281, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC157947/pdf/1120281.pdf
Ávila, K. M. S. et al. (2019). Seleção de alfafa (Medicago sativa L.) para tolerância ao alumínio em solução nutritiva. Revista Brasileira de Agropecuária Sustentável, 9(1), 105-111. 10.21206/rbas.v9i1.6279
Baldissera, T. C. et al. (2014). Plant development controls leaf area expansion in alfalfa plants competing for light. Annals of Botany, 113, 145-157. 10.1093/aob/mct251
Barnes, D. K. et al. (1979). Fall dormancy in alfalfa: A valuable predictive tool. In: Barnes, D.K. (ed.) Report of the 26th Alfalfa Improvement Conference, Brookings, South Dakota State University, SD.
Basigalup, D. H. & Ustarroz, E. (2007). Grazing alfalfa systems in the Argentinean pampas. Proceedings..., Monterey, USA. https://alfalfa.ucdavis.edu/+symposium/proceedings/ 2007/07-51.pdf
Benzaghta, M. A. et al. (2021). Aplicações de análise SWOT: uma revisão integrativa da literatura. Journal of Global Business Insights, 6(1), 54-72. 10.5038/2640-6489.6.1.1148.
Berone, G. D., Sardiña, M. C. & Moot, D. J. (2020). Animal and forage responses on lucerne (Medicago sativa L.) pastures under contrasting grazing managements in a temperate climate. Grass and Forage Science, 00, 1-14. 10.1111/gfs.12479.
Botrel, M. A. et al. (2001). Cultivares de alfafa em área de influência da Mata Atlântica no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira, 36(11), 1437-1442. https://www.scielo.br/j/pab/a/Bf6FgFDJwRyMxZvLxgZCqTn/?lang=pt&format=pdf
Bouton, J. H. (2012). Breeding lucerne for persistence. Crop and Pasture Science, 63(2), 95-106. 10.1071/CP12009
Brown, H. E., Moot, D. J. & Pollock, K. M. (2005). Herbage production, persistence, nutritive characteristics and water use of perennial forages grown over 6 years on a Wakanui silt loam. New Zealand Journal of Agricultural Research, v.48, p.423-439. 10.1080/00288233.2005.9513677
Brown, H. E., Moot, D. J. & Teixeira, E. I. (2006). Radiation use efficiency and biomass partitioning of lucerne (Medicago sativa L.) in a temperate climate. European Journal Agronomy, 25, 319-327. 10.1016/j.eja.2006.06.008.
Brummer, E. C., Shah, M. M. & Luth, D. (2000) Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Science, 40, 971-977. 10.2135/cropsci2000.404971x.
Bummer, E. C. (2004). Genomic research in alfalfa, Medicago sativa L. In: Wilson, R.F., Stalker, H.T. & Brummer, C.E. (Ed.). Legume Crop Genomics, AOCS Press, Champaign, Illinois, Chapter 7.
Chen, J. et al. (2013). Effects of cutting on alfalfa yield and quality in Northeast China. Journal of Animal and Veterinary Advances, 12(2), 253-26. https://www.cabdirect.org/ cabdirect/abstract/20133294145
Clark, S. G. et al. (2019). Maximizing lucerne (Medicago sativa L.) production with fixed-length recovery intervals after defoliation in mild winter environments. Journal of Agronomy and Crop Science, 205(1), 88-98. 10.1111/jac.12300
Costa, N. L. et al. (2011). Acúmulo de forragem e eficiência de utilização da radiação em pastagens de Axonopus aureus, durante o período seco, nos cerrados de Roraima. Revista Agro@mbiente On-line, 5(2), 143-147. https://www.alice.cnptia.embrapa.br/bitstream/doc/901802/1/548.pdf
Craig, P. R., Coventry, D. & Edwards, J. H. (2013). Productivity advantage of crop-perennial pasture intercropping in Southern Australia. Agronomy, Soils and Environmental Quality, 105(6), 1588-1596. 10.2134/agronj2013.0196
Cunningham, S. M. & Volenec, J. J. (1997). Seasonal carbohydrates and nitrogen metabolism in roots of contrasting alfalfa (Medicago sativa L.) cultivars. Journal of Plant Physiology, 153(1-2), 220-225. 10.1016/S0176-1617(98)80069-2
Cunningham, S. M. et al. (2001). Winter hardiness, root physiology and gene expression in successive fall dormancy selection of “Mesilla” and “CUF 101” alfalfa. Crop Science, 41, 1091-1098. 10.2135/cropsci2001.4141091x.
Fédière, G. et al. (2003). Record of densoviral diseases occuring among the noctuid populations in lucerne field at El-Bahareya oasis in Egypt. In: Papierok, B. (ed.) (2003). Insect Pathogens and Insects Parasitic Nematodes, IOBC wprs Bulletin, Athens, Greece, 26(1), 237-240.
França, S. et al. (1997). Radiação fotossintéticamente ativa e sua relação com a radiação solar global em dossel de alfafa, em função do índice de área foliar. Revista Brasileira de Agrometeorologia, 5(2), 147-153. http://sbagro.org/files/biblioteca/132.pdf
García, L.A. et al. (2021). Dynamics of aerial and perennial biomass of two lucerne cultivars with different fall dormancies subjected to two severities of cutting during the establishment phase. Revista de la Facultad de Agronomía, 120(1), 1-10. 10.24215/16699513e072
Gastal, F. & Lemaire, G. (2015). Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: review of the underlying ecophysiological process. Agriculture, 5, 1146-1171. 0.3390/agriculture5041146
Gramshaw, D., Lowe, K. F. & Lloyd, D. L. (1993). Effect of cutting interval and winter dormancy on yield, persistence, nitrogen concentration, and root reserves of irrigated lucerne in the Queensland subtropics. Australian Journal of Experimental Agriculture, 33, 847-854. 10.1071/EA9930847.
Haangerson, D. M., Cunningham, S. M. & Volenec, J. J. (2003). Root physiology of less fall dormant, winter hardy alfalfa selections. Crop Science, 43, 1441-1447. 10.2135/cropsci2003.1441.
Han, Q. et al. (2011). Characteristics of endogenous hormone variations in the roots of alfalfa (Medicago sativa L.) cultivars of different fall dormancy during spring regrowth stages. Agriculture Science in China, 10(7), 1032-1040. 10.1016/S1671-2927(11)60091-6
Harvey, B. M., Widdup, K. H. & Barrett, B. A. (2014). An evaluation of lucerne for persistence under grazing in New Zealand. In: Proceedings of…, Alexandra, New Zealand. https://www.nzgajournal.org.nz/index.php/ProNZGA/article/view/2954
Hoppen, S. M. et al. (2019). Shoot and perennial organs yields of lucerne genotypes of three fall dormancy levels over five years. Proceedings of..., Wagga Wagga, Australia. http://agronomyaustraliaproceedings.org/images/sampledata/2019/2019ASA_Hoppen_Sarah_315.pdf
Jáuregui, J. M. et al. (2019). Yield components of lucerne were affected by sowing dates and inoculation treatments. European Journal of Agronomy, 103, 1-12. 10.1016/j.eja.2018.10.005
Kallembach, R. L., Nelson, C. J. & Coutts, J. H. (2002). Yield, quality, and persistence of grazing- and hay-type alfalfa under three harvest frequency. Agronomy Journal, 94, 1094-1103. 10.2134/agronj2002.1094
Lemaire, G. & Chapman, D. (1996). Tissue flows in grazed plant communities. In: Hodgson, J. & Illius, A.W. (Eds.). The ecology and management of grazing systems, CABI, Wallingford, 3-36.
Lemaire, G., Durand, J. L. & Lila, M. (1989). Effet de la sécheresse sur la valeur énergétiwue et azotée de la luzerne (Medicago sativa L.). Agronomie, 9(9), 841-848. https://hal.inrae.fr/hal-02726509
Lemaire, G. & Agnusdei, M. (2000). Leaf tissue turnover and efficiency of herbage utilization. In: Lemaire, G. et al. (Eds.). Grassland Ecophysiology and Grazing Ecology, CABI Publishing, Wallingford, UK, 265–287.
Lemaire, G. et al. (2019). Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review. Agronomy for Sustainable Development¸39-27. 10.1007/s13593-019-0570-6
Li, X. et al. (2015). Mapping fall dormancy and winter injury in tetraploid alfalfa. Crop Science, 55, 1995-2011. 10.2135/cropsci2014.12.0834
Liang, S. et al. (2014). Incident Photosynthetic Active Radiation. In: Liang, S. et al. (Eds.). Global Land Surface Satellite (GLASS) Products. Springer, New York. 10.1007/978-3-319-02588-9_6.
Liu, Z. et al. (2016). Autumn dormancy regulates the expression of cas18, vsp and corF genes during cold acclimation of lucerne (Medicago sativa L.). Crop & Pasture Science, 67, 666-678. 10.1071/CP15289
Luo, Y. Z. et al. (2019). Roots of lucerne seedlings are more resilient to water deficit than leaves and stems. Agronomy, 9, 123. 10.3390/agronomy9030123
Maamouri, A. et al. (2017). Performance of lucerne genotypes for biomass production and nitrogen content differs in monoculture and in mixture with grasses and is partially predicted from traits recorded on isolated plants. Crop & Pasture Science, 68(11), 942-951. 10.1071/CP17052
Mattera, J. et al. (2013). Yield components, light interception and radiation use efficiency of Lucerne (Medicago sativa L.) in response to row spacing. European Journal of Agronomy, 45, 87-95. 10.1016/j.eja.2012.10.008
Mitchell, M. L. et al. (2020). Harvest initial affects lucerne (Medicago sativa L.) taproot total yield, starch, nitrogen and water-soluble carbohydrates. Journal of Agronomy, Crop Science, 0, 1-11. 10.1111/jac.12397
Moot, D. J., Teixeira, E. I. & Brown, H. (2012). Alfalfa. In: Steduto, P., et al. (Eds.). Food and Agriculture Organization of the United Nations. Chapter 3, 212-219. Rome, Italy. https://www.fao.org/3/i2800e/i2800e.pdf
Moot, D. J. et al. (2021). Pasture resilience reflects differences in root and shoot responses to defoliation, and water and nitrogen deficits. Journal of New Zealand Grasslands, 17. 10.33584/rps.17.2021.3472
Moraes, A. & Palhano, A. L. (2002). Fisiologia da produção de plantas forrageiras. In: Wachowicz, C. M. & Carvalho, R. N. (Eds.). Fisiologia Vegetal - Produção e Pós-Colheita. 1ed. Curitiba: Champagnat, 1, 249-272. https://www.fcav.unesp.br/Home/departamentos/zootecnia/anaclaudiaruggieri/1.fisiologiaplantas_forrageiras.pdf
Pembletom, K. G., Cunningham, S. M. & Volenec, J. J. (2010). Effects of summer irrigation on seasonal changes in taproot reserves and the expression of winter dormancy/activity in four contrasting lucerne cultivars. Crop & Pasture Science, 61, 873-884, 10.1071/CP10030
Radcliffe, J. E. & Baars, J. A. (1987). The productivity of temperate grasslands. In: Snaydon, R. W. (Eds). Ecosystems of the world. Elsevier Science Publishers, Amsterdam, Netherlands.
Radin, B. et al. (2003). Eficiência no uso de radiação fotossinteticamente ativa pela cultura do tomateiro em diferentes ambientes. Pesquisa Agropecuária Brasileira, 38(9), 1017-1023, 2003. 10.1590/S0100-204X2003000900001
Rassini, J. B. (1999). Alfafa (Medicago sativa L.): estabelecimento e cultivo no Estado de São Paulo. In: BARBOSA, R., et al. (Ed.). Utilização de forrageiras para intensificação da produção de carne e leite. Anais..., EMBRAPA – Pecuária Sudeste, São Carlos, São Paulo, 140. https://www.alice.cnptia.embrapa.br/bitstream/doc/44529/1/ PROCIJBR1999.00071.PDF
Rassini, J. B. et al. (2015). Manejo da forragem. In: Ferreira, R.P., et al. (Ed.). Cultivo e utilização de alfafa na alimentação de vacas leiteiras. EMBRAPA, Brasília, 47-51.
Rimi, F. et al. (2014). Fall dormancy and harvest stage impact on alfalfa persistence in a subtropical climate. Agronomy Journal, 106(4), 1258-1266. 10.2134/agronj13.0495
Saibro, J. C. (1985). Produção de alfafa no Rio Grande do Sul. In: Simpósio sobre manejo de pastagem. Anais..., Piracicaba: FEALQ, 61-106.
Seppänen, M. M. et al. (2018). Growth, freezing tolerance, and yield performance of alfalfa (Medicago sativa L.) cultivars grown under controlled and field conditions in northern latitudes. Canadian Journal of Plant Science, 98, 1109-1118. 10.1139/cjps-2017-0305
Ta, H., Teixeira, E. I. & Moot, D. J. (2016). Impact of autumn (fall) dormancy rating on growth and development of seedling Lucerne. Journal of New Zealand Grasslands, 78, 169-176. http://dspace.lincoln.ac.nz/handle/10182/11511
Ta, H. et al. (2020). Yield and quality changes in lucerne of different fall dormancy rates under three defoliation regimes. European Journal of Agronomy, 115. 10.1016/j.eja.2020.126012
Tabacco, E. et al. (2002). Effect of cutting frequency on dry matter yield and quality of lucerne (Medicago sativa L.) in the Po Valley. Italian Journal of Agronomy, 6(1), 27-33. https://agris.fao.org/agris-search/search.do?recordID=IT2003063362
Teixeira, E. I. et al. (2007a). The dynamics of lucerne (Medicago sativa L.) yields components in response to defoliation frequency. European Journal of Agronomy, 26, 394-400. 10.1016/j.eja.2006.12.005
Teixeira, E. I. et al. (2007b). How does defoliation management impact on yield, canopy forming process and light interception of lucerne (Medicago sativa L.) crops? European Journal of Agronomy, 27, 154-164. 10.1016/j.eja.2007.03.001
Teixeira, E. I., Moot, D. J. & Mickelbart, M. V. (2007). Seasonal patterns of root C and N reserves of lucerne crops (Medicago sativa L.) grown in a temperate climate were affected by defoliation regimes. European Journal of Agronomy, 26, 10-20. 10.1016/j.eja.2006.08.010
Teixeira, E. I., Moot, D. J. & Brown, H. E. (2008). Defoliation frequency and season affected use radiation efficiency and dry matter partitioning to roots of lucerne (Medicago sativa L.) crops. European Journal of Agronomy, 28(2), 103-111. 10.1016/j.eja.2007.05.004
Teixeira, E. I. et al. (2011). Growth and phonological development patterns differ between seedling and regrowth lucerne crop (Medicago sativa L.). European Journal of Agronomy, 35, 47-55. 10.1016/j.eja.2011.03.006
Ventroni, L. M., Volenec, J. J. & Cangiano, C. A. (2010). Fall dormancy and cutting frequency impact on alfalfa yield and yields components. Field Crop Research, 119, 252-259. 10.1016/j.fcr.2010.07.015
Veronesi, F., Brummer, E. C. & Huyghe, C. (2010). Alfalfa. In: Boller, B., Posselt, U. K. & Veronesi, F. (Eds.). Fodder crops and amenity grasses, Handbook of Plant Breeding, 5, Springer, New York. 10.1007/978-1-4419-0760-8_17
Vilela, D. et al. (2008). Prioridades de pesquisa e futuro da alfafa no Brasil. In: FERREIRA, R. D. P. et al (Ed.). Cultivo e utilização de alfafa nos trópicos, São Carlos: EMBRAPA Pecuária Sudeste, 489 p. https://www.alice.cnptia.embrapa.br/bitstream/doc/47404/4/PROCIRPF2008.00235.pdf
Wang, C. et al. (2009). Yields of alfalfa varieties with different fall-dormancy levels in temperate environment. Agronomy Journal, 101(5), 1146-1152. 10.2134/agronj2009.0026
Weller, D. E. (1987). Self-thinning exponent correlated allometric measures of plant geometry. Ecology, 68(4), 813-821. 10.2307/1938352
Xu, H. et al. (2020). Metabolomic analyses reveal substances that contribute to the increased freenzing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biology, 20(15). 10.1186/s12870-019-2233-9
Yang, X. (2020). Modelling phenological development, yield and quality of lucerne (Medicago sativa L.) using APSIM next generation. A thesis submitted in partial fulfillment of the requirement for the Degree of Doctor of Philosophy at Lincoln University, 323p. https://researcharchive.lincoln.ac.nz/handle/10182/13956
Yang, X. et al. (2021). Development of lucerne model in APSIM next generation: 1 phenology and morphology of genotypes with different fall dormancies. European Journal of Agronomy, 130, 126372. 10.1016/j.eja.2021.126372
Yoda, K. (1963). Self-thinning in overcrowded pure stands under cultivate or natural conditions (Intraspecific competitions among higher plants). Journal of the Institute Polytechnic of Osaka, 14, 107-129. https://ci.nii.ac.jp/naid/10030417634/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Sarah Maria Hoppen; Marcela Abbado Neres; Derrick Moot

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.