Binary Mixtures of ZnO/TiO2 for Solar Heterogeneous Photocatalysis of Non-Purgeable Organic Carbon in Landfill Leachate
DOI:
https://doi.org/10.33448/rsd-v11i6.24570Keywords:
Titanium dioxide; Zinc oxide; Heterogeneous photocatalysis.Abstract
Landfill leachate is a global problem that has attracted considerable attention from researchers in different areas. It is crucial to develop optimized treatment strategies for landfill leachate, given the need to minimize or eliminate negative environmental impacts resulting from the inadequate disposal of solid waste, as determined by legislation. Landfill leachate is primarily composed of humic substances, which may associate with other toxic molecules and are recalcitrant to the conventional treatments used in Brazil. This study assessed the photocatalytic degradation of carbonaceous materials in leachate collected from the Cachoeira Paulista municipal landfill, São Paulo State, Brazil. Sunlight was used as energy source without additional light inputs. Experiments were carried out in a thin-film fixed-bed reactor, using metal plates coated with paints formulated for this purpose. Paints had a low additives loading, including that of photocatalysts. We investigated the photocatalytic behavior of the binary system ZnO/TiO2 incorporated into acrylic varnish in the degradation of non-purgeable organic carbon (NPOC) in samples of humic acids and fulvic acids + humins. Reactions were conducted under acidic, neutral, or alkaline conditions. NPOC degradation was low in fulvic acid + humin samples, regardless of photocatalyst concentration or pH. The proposed process resulted in high degradation of humic acids, especially under conditions of low chemical stability, which facilitated oxidation. A maximum humic acid degradation of 65% was achieved using high concentrations of TiO2 in acidic medium.
References
ABRELPE - Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. (2020). Panorama dos resíduos sólidos no Brasil 2019/2020. Abrelpe. https://abrelpe.org.br/panorama-2020/
Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A. A., Amin, M. O., & Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports, 8(1), 7104. https://doi.org/10.1038/s41598-018-25673-5
Brito, R. A., Filho, H. J. I., Aguiar, L. G., Alcântara, M. A. K., Siqueira, A. F., & Rós, P. C. M. D. (2019). Degradation Kinetics of Landfill Leachate by Continuous-Flow Catalytic Ozonation. Industrial & Engineering Chemistry Research, 58(23), 9855–9863. https://doi.org/10.1021/acs.iecr.9b01391
Chemlal, R., Azzouz, L., Kernani, R., Abdi, N., Lounici, H., Grib, H., Mameri, N., & Drouiche, N. (2014). Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecological Engineering, 73, 281–289. https://doi.org/10.1016/j.ecoleng.2014.09.043
Dia, O., Drogui, P., Buelna, G., Dubé, R., & Ihsen, B. S. (2017). Electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials. Chemosphere, 168, 1136–1141. https://doi.org/10.1016/j.chemosphere.2016.10.092
Islam, Md. T., Dominguez, A., Turley, R. S., Kim, H., Sultana, K. A., Shuvo, M., Alvarado-Tenorio, B., Montes, M. O., Lin, Y., Gardea-Torresdey, J., & Noveron, J. C. (2020). Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water. Science of The Total Environment, 704, 135406. https://doi.org/10.1016/j.scitotenv.2019.135406
Izário Filho, H. J., Siqueira, A. F., Alcântara, M. A. K., Aguiar, L. G., & Cavalcanti, A. S. (2018). Carbonaceous decomposition of a recalcitrant effluent treated by the photo-Fenton process: A kinetic approach. Environmental Technology, 41(4), 411–419. https://doi.org/10.1080/09593330.2018.1499813
Izário Filho, H. J., Siqueira, A. F., Alcântara, M. A. K., Aguiar, L. G., Rós, P. C. M. D., Napoleão, D. A. D. S., Cavalcanti, A. S., & Brandão, J. J. (2021). Solar photo-Fenton oxidation of mature landfill leachate: Empirical model and chemical inferences. Environmental Technology, 42, 1–8. https://doi.org/10.1080/09593330.2021.1909656
Jašková, V., Hochmannová, L., & Vytřasová, J. (2013). TiO2 and ZnO Nanoparticles in Photocatalytic and Hygienic Coatings. International Journal of Photoenergy, 2013, 1–6. https://doi.org/10.1155/2013/795060
Jones, F. N., Nichols, M. E., & Pappas, S. P. (2017). Organic coatings: Science and technology (Fourth edition). John Wiley & Sons, Inc.
Klučáková, M. (2018). Conductometric study of the dissociation behavior of humic and fulvic acids. Reactive and Functional Polymers, 128, 24–28. https://doi.org/10.1016/j.reactfunctpolym.2018.04.017
Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge. Journal of Colloid and Interface Science, 298(2), 730–741. https://doi.org/10.1016/j.jcis.2006.01.003
Napoleão, D. A. S., Izário Filho, H. J., Siqueira, A. F., Bredda, E. H., Aguiar, L. G., Rós, P. C. M., & Alcântara, M. A. K. (2022). Comparative Study of Data Analysis Techniques for Photo-Fenton Degradation of Landfill Leachate. Industrial & Engineering Chemistry Research, 61(5), 1985–1993. https://doi.org/10.1021/acs.iecr.1c04087
Salvadores, F., Alfano, O. M., & Ballari, M. M. (2020). Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content. Applied Catalysis B: Environmental, 268, 118694. https://doi.org/10.1016/j.apcatb.2020.118694
Samanamud, G. R. L., Loures, C. C. A., Souza, A. L., Salazar, R. F. S., Oliveira, I. S., Silva, M. B., & Izário Filho, H. J. (2012). Heterogeneous Photocatalytic Degradation of Dairy Wastewater Using Immobilized ZnO. ISRN Chemical Engineering, 2012, 1–8. https://doi.org/10.5402/2012/275371
Silva, T. F. C. V., Soares, P. A., Manenti, D. R., Fonseca, A., Saraiva, I., Boaventura, R. A. R., & Vilar, V. J. P. (2017). An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Science of The Total Environment, 576, 99–117. https://doi.org/10.1016/j.scitotenv.2016.10.058
Sun, W., Meng, S., Zhang, S., Zheng, X., Ye, X., Fu, X., & Chen, S. (2018). Insight into the Transfer Mechanisms of Photogenerated Carriers for Heterojunction Photocatalysts with the Analogous Positions of Valence Band and Conduction Band: A Case Study of ZnO/TiO 2. The Journal of Physical Chemistry C, 122(27), 15409–15420. https://doi.org/10.1021/acs.jpcc.8b03753
Turkten, N., & Bekbolet, M. (2020). Photocatalytic performance of titanium dioxide and zinc oxide binary system on degradation of humic matter. Journal of Photochemistry and Photobiology A: Chemistry, 401, 112748. https://doi.org/10.1016/j.jphotochem.2020.112748
Vithanage, M., Wijesekara, H., & Mayakaduwa, S. S. (2017). Isolation, purification and analysis of dissolved organic carbon from Gohagoda uncontrolled open dumpsite leachate, Sri Lanka. Environmental Technology, 38(13–14), 1610–1618. https://doi.org/10.1080/09593330.2016.1235229
Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Malato, S., & Weber, J.-V. (2004). Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts. Applied Catalysis B: Environmental, 53(2), 127–137. https://doi.org/10.1016/j.apcatb.2004.04.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nicoly Milhardo Lourenço Nohara; Helcio José Izário Filho; Marco Aurélio Kondracki de Alcântara; Gabriel Caracciolo Koenigkam de Oliveira; Fernando Vernilli Junior; Evandro Luís Nohara; Kleberson Aristogenio de Oliveira; Marcos Fernandes de Oliveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.