Mezclas binarias de ZnO/TiO2 para la catálisis solar heterogénea de carbono orgánico no purgable en lixiviados de rellenos sanitarios
DOI:
https://doi.org/10.33448/rsd-v11i6.24570Palabras clave:
Dióxido de titanio; Óxido de zinc; Fotocatálisis heterogénea.Resumen
El lixiviado de los relleno sanitario es un problema global que ha atraído una atención considerable por parte de investigadores en diferentes campos. Es fundamental desarrollar estrategias de tratamiento optimizadas para estos lixiviados, dada la necesidad de minimizar o eliminar los impactos ambientales negativos resultantes de la disposición inadecuada de residuos sólidos, según lo determine la legislación. El lixiviado de relleno sanitario está compuesto principalmente por sustancias húmicas, que pueden estar asociadas con otras moléculas tóxicas y recalcitrantes a los tratamientos convencionales utilizados en Brasil. Este estudio estimó la degradación fotocatalítica de materiales carbonosos en un lixiviado recolectado en el relleno sanitario municipal de Cachoeira Paulista, São Paulo, Brasil. La luz solar se utilizó como fuente de energía, sin utilizar fuentes de energía adicionales. Los experimentos se llevaron a cabo en un reactor de reactor de lecho fijo de película fina, utilizando láminas de metal revestidas con pinturas especialmente formuladas. Las tintas tenían una carga aditiva baja, incluidos los fotocatalizadores. Investigamos el comportamiento fotocatalítico del sistema binario ZnO/TiO2 incorporado en barniz acrílico sobre la degradación del carbono orgánico no depurable (NOPC) en muestras de ácidos húmicos y ácidos fúlvicos + huminas. Las reacciones se realizaron en condiciones ácidas, neutras o alcalinas.La degradación de NOPC fue baja en muestras de ácido fúlvico + húmina, independientemente de la concentración de fotocatalizador o el pH. El proceso propuesto resultó en una alta degradación de ácidos húmicos, especialmente en condiciones de baja estabilidad química, lo que facilitó la oxidación. Se logró una degradación máxima del 65% de los ácidos húmicos utilizando altas concentraciones de TiO2 en un medio ácido.
Citas
ABRELPE - Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. (2020). Panorama dos resíduos sólidos no Brasil 2019/2020. Abrelpe. https://abrelpe.org.br/panorama-2020/
Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A. A., Amin, M. O., & Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports, 8(1), 7104. https://doi.org/10.1038/s41598-018-25673-5
Brito, R. A., Filho, H. J. I., Aguiar, L. G., Alcântara, M. A. K., Siqueira, A. F., & Rós, P. C. M. D. (2019). Degradation Kinetics of Landfill Leachate by Continuous-Flow Catalytic Ozonation. Industrial & Engineering Chemistry Research, 58(23), 9855–9863. https://doi.org/10.1021/acs.iecr.9b01391
Chemlal, R., Azzouz, L., Kernani, R., Abdi, N., Lounici, H., Grib, H., Mameri, N., & Drouiche, N. (2014). Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecological Engineering, 73, 281–289. https://doi.org/10.1016/j.ecoleng.2014.09.043
Dia, O., Drogui, P., Buelna, G., Dubé, R., & Ihsen, B. S. (2017). Electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials. Chemosphere, 168, 1136–1141. https://doi.org/10.1016/j.chemosphere.2016.10.092
Islam, Md. T., Dominguez, A., Turley, R. S., Kim, H., Sultana, K. A., Shuvo, M., Alvarado-Tenorio, B., Montes, M. O., Lin, Y., Gardea-Torresdey, J., & Noveron, J. C. (2020). Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water. Science of The Total Environment, 704, 135406. https://doi.org/10.1016/j.scitotenv.2019.135406
Izário Filho, H. J., Siqueira, A. F., Alcântara, M. A. K., Aguiar, L. G., & Cavalcanti, A. S. (2018). Carbonaceous decomposition of a recalcitrant effluent treated by the photo-Fenton process: A kinetic approach. Environmental Technology, 41(4), 411–419. https://doi.org/10.1080/09593330.2018.1499813
Izário Filho, H. J., Siqueira, A. F., Alcântara, M. A. K., Aguiar, L. G., Rós, P. C. M. D., Napoleão, D. A. D. S., Cavalcanti, A. S., & Brandão, J. J. (2021). Solar photo-Fenton oxidation of mature landfill leachate: Empirical model and chemical inferences. Environmental Technology, 42, 1–8. https://doi.org/10.1080/09593330.2021.1909656
Jašková, V., Hochmannová, L., & Vytřasová, J. (2013). TiO2 and ZnO Nanoparticles in Photocatalytic and Hygienic Coatings. International Journal of Photoenergy, 2013, 1–6. https://doi.org/10.1155/2013/795060
Jones, F. N., Nichols, M. E., & Pappas, S. P. (2017). Organic coatings: Science and technology (Fourth edition). John Wiley & Sons, Inc.
Klučáková, M. (2018). Conductometric study of the dissociation behavior of humic and fulvic acids. Reactive and Functional Polymers, 128, 24–28. https://doi.org/10.1016/j.reactfunctpolym.2018.04.017
Kosmulski, M. (2006). pH-dependent surface charging and points of zero charge. Journal of Colloid and Interface Science, 298(2), 730–741. https://doi.org/10.1016/j.jcis.2006.01.003
Napoleão, D. A. S., Izário Filho, H. J., Siqueira, A. F., Bredda, E. H., Aguiar, L. G., Rós, P. C. M., & Alcântara, M. A. K. (2022). Comparative Study of Data Analysis Techniques for Photo-Fenton Degradation of Landfill Leachate. Industrial & Engineering Chemistry Research, 61(5), 1985–1993. https://doi.org/10.1021/acs.iecr.1c04087
Salvadores, F., Alfano, O. M., & Ballari, M. M. (2020). Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content. Applied Catalysis B: Environmental, 268, 118694. https://doi.org/10.1016/j.apcatb.2020.118694
Samanamud, G. R. L., Loures, C. C. A., Souza, A. L., Salazar, R. F. S., Oliveira, I. S., Silva, M. B., & Izário Filho, H. J. (2012). Heterogeneous Photocatalytic Degradation of Dairy Wastewater Using Immobilized ZnO. ISRN Chemical Engineering, 2012, 1–8. https://doi.org/10.5402/2012/275371
Silva, T. F. C. V., Soares, P. A., Manenti, D. R., Fonseca, A., Saraiva, I., Boaventura, R. A. R., & Vilar, V. J. P. (2017). An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Science of The Total Environment, 576, 99–117. https://doi.org/10.1016/j.scitotenv.2016.10.058
Sun, W., Meng, S., Zhang, S., Zheng, X., Ye, X., Fu, X., & Chen, S. (2018). Insight into the Transfer Mechanisms of Photogenerated Carriers for Heterojunction Photocatalysts with the Analogous Positions of Valence Band and Conduction Band: A Case Study of ZnO/TiO 2. The Journal of Physical Chemistry C, 122(27), 15409–15420. https://doi.org/10.1021/acs.jpcc.8b03753
Turkten, N., & Bekbolet, M. (2020). Photocatalytic performance of titanium dioxide and zinc oxide binary system on degradation of humic matter. Journal of Photochemistry and Photobiology A: Chemistry, 401, 112748. https://doi.org/10.1016/j.jphotochem.2020.112748
Vithanage, M., Wijesekara, H., & Mayakaduwa, S. S. (2017). Isolation, purification and analysis of dissolved organic carbon from Gohagoda uncontrolled open dumpsite leachate, Sri Lanka. Environmental Technology, 38(13–14), 1610–1618. https://doi.org/10.1080/09593330.2016.1235229
Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Malato, S., & Weber, J.-V. (2004). Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts. Applied Catalysis B: Environmental, 53(2), 127–137. https://doi.org/10.1016/j.apcatb.2004.04.017
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Nicoly Milhardo Lourenço Nohara; Helcio José Izário Filho; Marco Aurélio Kondracki de Alcântara; Gabriel Caracciolo Koenigkam de Oliveira; Fernando Vernilli Junior; Evandro Luís Nohara; Kleberson Aristogenio de Oliveira; Marcos Fernandes de Oliveira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.