Study of biodegradation of Poly(butylene adipate co-terephthalate) (PBAT) by maritime microorganisms from the Atlhantic Coast of Recife-PE (Brazil)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i17.24579

Keywords:

Biodegradation; Polymers; PBAT; Microorganisms; Marine environment.

Abstract

Biodegradable polymers undergo a degradation process resulting from the action of microorganisms such as bacteria, fungi and algae. Poly(butylene adipate co-terephthalate) (PBAT) is considered a biodegradable synthetic polymer, even if its degradation has been confirmed under industrial composting conditions, the investigation of its degradation in the marine environment is still limited. Therefore, this work aims to study the biodegradation in the marine environment, of the biodegradable polymer (PBAT), and for that, it was submerged in a static system, using seawater from the coastal region of Pernambuco/Brazil as a fluid. The samples were studied by chemical, thermal and microbiological analyses, after 7, 14, 30, 90, 120 and 180 days of immersion. Microbiological analyzes indicated that aerobic heterotrophic bacteria (AHB), anaerobic heterotrophic bacteria (AnHB) and iron precipitating bacteria (IPB) were quantified in the system at all times at high concentrations, with the exception of Sulfate reducing bacteria (SRB), fungi and Pseudomonas that showed lower concentrations compared to other bacterial groups. Biodegradation was observed by the percentage of mass loss of approximately 2.25%. In the DSC, the expansion of melting peaks after exposure to the marine environment was noted, while the TGA did not show changes in the curve trends. The FTIR showed that no new band appeared, nor displacement, since the vibrations of the covalent bonds of the groups are present regardless of the biodegradation. Indicating that no significant microbiological degradation of PBAT was observed.

References

Andrade, M. F, Filho, L. E. P. T. de M, Silva, I. D. de L, Lima, J. C. da C, Carvalho, L. H, Almeida, Y. M. B, & Vinhas, G. M (2020). Influence of Gamma Radiation on the Properties of Biodegradable PBAT – Poly (butylene Adipate co‐terephthalate) Active Films with Orange Essential Oil. Macromolecular Symposia, 394(1), 200005.

Andrade, M. F, Gois, G. S, Garcia, S. M. S, Da Silva, I. D. L, Caetano, V. F, De Almeida, Y. M. B, De Melo, T. J. A, & Vinhas, G. M. (2018). Active Packaging Using Orange Oil Incorporated into PBAT Biodegradable Films. Materials Science Forum, 930, 283–289.

Andrade, M. F, Silva, I. D. L, Cerqueira, G. R, Almeida, Y. M. B, & Vinhas, G. M (2021). Caracterização térmica de filmes ativos biodegradáveis de PBAT aditivados com óleo de laranja. Brazilian Journal of Development. 7(8), 85955-85964.

Argolo, E, França, F, Oliveira, S, Silva, R, Cruz, T, Queiroz, V, Urtiga Filho, S, Lima, M (2015). Biocorrosão em cupons de aço carbono AISI 1020 expostos à água do mar e óleo diesel S10/Biodiesel B6. In: Conferência sobre Tecnologia dos Equipamentos, 13, Cabo de Santo Agostinho, Anais... Abendi.

Arpaporn, T, Yupaporn, R, & Kasama, J. (2013). Preparation and Characterization of Poly(lactic acid)/Poly(butylene adipate-co-terepthalate) Blends and Their Composite, Polymer-Plastics Technology and Engineering, 52:13, 1362-1367.

Barreto, L. S, Da Silva, E. E. G, Barbosa, J. D. V, Maciel, S. H. O, Almeida, Y. M. B, & Vinhas, G. M (2020) Microrganismos na Biodegradação de Polímeros em Meio Aquoso. Ciência e tecnologia: estudos sobre as propriedades, processamento e produção de materiais. Artemis.

Characklis, W. G, & Marshall, K. C. (1990). Biofilms: A basis for in interdisciplinary approach. In Characklis, W. G, Marshall, K. C. Biofilms. New York: John Wiley & Sons. 796.

Cobo, F. N, Santana, H, & Carvalho, G. M. (2021) Estudo da miscibilidade de blendas de poli (ácido lático)/ poli (butileno adipato-co-tereftalato) preparadas pelo método de evaporação de solvente. Revista Matéria, 26(2), 1517-7076.

Companhia de Tecnologia de Saneamento Ambiental, CETESB, [Company of Environmental Sanitation Technology, CETESB] (1988). Contagens de colônias de bactérias que precipitam o ferro, [Counting of bacterial colonies that precipitate iron], Norma L5.207, 1–20, [Norm L5.207 (1988) 1–20], Portuguese.

Delacuvellerie, A, Benali, S, Cyriaque, V, Moins, S, Raquez, J, M, Gobert, S, & Wattiez, R. (2021). Composição do biofilme microbiano e degradação do polímero de plásticos compostáveis e não compostáveis imersos no meio marinho. Journal of Hazardous Materials, 419, 126526.

Dutra, J. C. V. (2017). Quaternários de Amônio e Quitosana no Combate à Biocorrosão so Aço Carbono em Água do Mar: Análise Microbiológica e Perda de Massa. Trabalho de Conclusão de Curso. Recife, PE: UFPE.

Ferreira, F. G. D, Silva, P, Moraes, P. H. C, Alves, A. S. S, Lima, M. A. G. A, Oliveira, S. H, & Urtiga Filho, S. L. (2016). Efeito de biocidas na corrosão induzida microbiologicamente do aço carbono em água salina. In: (INTERCORR), 6, Búzios.

ISO 527-1:2019. Plastics — Determination of tensile properties — Part 1: General principles/ Também no catálogo da ABMT.

Jiang, G, Shuidong, F. W, & Huang, Z. H. (2020). Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. Journal of Applied Polymer Science. 137, 48924.

Kasuya, K, Ishii, N, Inoue, Y, Yasawa, K, Tagaya, Y, Youtsumoto, Y, Kazahaya, J, & Nagai, D. (2009). Characterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus. Polymer Degradation and Stability, 94, 1190-1196.

Kijchavengkul, T, Auras, R, Rubino, M, Selke, S, Ngouajio, M, & Fernandez, T. (2010). Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polymer Degradation and Stability, 95, 2641-2647.

Kuwabara, K, Gan, Z. H, Nakamura, T, Abe, H, & Doi, Y. (2002). Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butylene adipateco-butylene terephthalate) and related polyesters. Biomacromolecules. 3(2): 390-396.

Moraes Filho, L. E. P. T. (2020). Desenvolvimento de filmes ativos de poli (butileno adipato co-tereftalato) (PBAT) e investigação da biodegradação em solo. Dissertação (Mestrado). Universidade Federal de Pernambuco, Recife- PE.

Munhoz, P. M, Nascimento, F. C, Silva, L. G. A, Harada, J, & Calvo, W. A. P. (2021). Influence of electron beam irradiation on the mechanical properties of PBAT / PLA polymeric blend, Brazilian J. Dev., 7(8), 78782–78792.

Nikolić, M. A. L, Gauthier, E, Colwell, J. M, Halley, P, Bottle, S. E, Laycock, B, & Truss, R. (2017). The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polymer Degradation and Stability, 145, 102–119.

Palsikowski, P. A K,uchnier, C. N, Pinheiro, I. F, & Morales, A. R. (2018). Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 26(1), 330–341.

Postgate, J. R. (1984). The Sulphate-Reducing Bacteria Cambridge University Press, Cambridge, England.

Roy, P. K, Titus, S, Surekha, P, Tulsi, E, Deshmukh, C, & Rajagopal, C. (2008). Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polymer Degradation and Stability, 93, 10, 1917-1922.

Shahlari, M, & Lee, S. (2012). Mechanical and morphological properties of poly(butylene adipate-coterephthalate) and poly(lactic acid) blended with organically modified silicate layers. Polymer Engineer Science, 52(7), 1420-1428.

Shankar, S, & Rhim, J. (2016). Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT - Food Science and Technology, 72, 149-156.

Silva, N, Neto, R. C, Junqueira, V. C. A, & Silveirs, N. F. A. (2005). Manual de métodos de análise microbiológica da água, Manual of methods for microbiological analysis of water. Varela Editora e Livraria Ltda, São Paulo.

Tserki, V, Matzinos, P, Pavlidou, E, Vachliotis, D, & Panayiotou, C. (2006). Biodegradable aliphatic polyesters. Part I. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylenes succinate-co-butylene adipate. Polym. Degrad. Stab. 91, 367-376.

Venkatesan, R, & Rajeswari, N. (2017). TiO2 nanoparticles/poly(butylene adipate-coterephthalate) bionanocompositefilms for packaging applications. Polymers for advanced technologies, 28, 1699-1706.

Videla, H. A. (2003). Biocorrosão, biofouling e biodegradação de materiais. Editra Eggard Blucher Ltda, 148.

Wang, X, Shi, J. Chen, Y. Shi, Y, & Fu, Z. (2011). Nonisothermal crystallization behavior of biodegradable poly(butylene terephthalate-co-butylene adipate-co-ethylene terephthalate-co-ethylene adipate) copolyester. Polym. Eng. Sci. 51, 2535-2541.

Wang, X. W, Wang, G. X, Huang, D, Lu, B, Zhen, Z. C, Ding, Y, & Ji, J. H. (2018). Degradability comparison of poly(butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments. Journal of Applied Polymer Science, e46916.

Wimpenney, J. (2000). Na overview of biofilms as functional communities. In: Allison, D.G.; Gilbert, P.; Lappin-Scott, H.M.; eds, Communities, Structures and Co-operation in Biofilms. UK: Cambridge University Press, 1-24.

Witt, U, Eining, T, Yamamote, M, Kleeberg, I, Decwer, W. D, & Müller, R. J. (2001). Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere, v. 44, p. 289-299.

Wu, C, & Gan, Z. (1998). A novel method of studying polymer biodegradation. Polymer, 18, 4429-4431.

Yamamoto, M, Witt, U, Skupin, G, Beimborn, D, & Müller, R. J. (2002). Biodegradable Aliphatic-Aromatic polyesters: “Ecoflex®, 299.

Yanming, C, Jungang, L, Jimin, F, Young, L, Zhaohng, W, Meng, Z, & Ronggunang, S. (2012). Discrimination of Poly(butylenes adipate-co-terephthalate) and Poly(ethylene terephthalate) with Fourier Transform Infrared Microscope and Raman Spectroscope. Spectroscopy letters: An International Journal for rapid Communication, pp.280-284.

Zehetmeyer, G, Meira, S. M. M, Scheibel, J. M, De Oliveira, R. V. B, Brandelli, A, & Soares, R. M. D. (2016). Influence of melt processing on biodegradable nisinPBAT films intended for active food packaging applications. J. Appl. Polym. Sci. 133(13), 1.

Downloads

Published

22/12/2021

How to Cite

BARRETO, L. S. .; SILVA, E. E. G. da .; HENRIQUE, M. A. .; BARBOSA, J. D. V. .; OLIVEIRA, S. H. de .; ALMEIDA, Y. M. B. de .; VINHAS, G. M. . Study of biodegradation of Poly(butylene adipate co-terephthalate) (PBAT) by maritime microorganisms from the Atlhantic Coast of Recife-PE (Brazil) . Research, Society and Development, [S. l.], v. 10, n. 17, p. e164101724579, 2021. DOI: 10.33448/rsd-v10i17.24579. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24579. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings