Crude oil biodegradation by bacterial cells immobilized on corn starch-alginate beads

Authors

DOI:

https://doi.org/10.33448/rsd-v10i17.24706

Keywords:

Biodegradation; Immobilization cell; Polymeric matrix; Hydrocarbon.

Abstract

Immobilized cells have shown advantages in removing hydrocarbons from oil compared to the use of free cells. This work aimed to evaluate the potential of hydrocarbon degradation by bacteria immobilized in support matrices composed of commercial potassium alginate and corn starch. The polymeric immobilizing matrix was developed using dental alginate 2% and corn starch 0.5% and 1%. The matrices have macropores internally, good ability to immobilize cells, increasing baseline respiration (F2 and F3: 4 mg / l CO2 60 days), bacterial biomass (F1: 1.5 x 106 CFU / g 60 days) and the removal of n- alkanes and PAHs of the sediment, when compared to free cells (0 mg / l CO2; 0.3 x 106 CFU / g 60 days). The aromatics hydrocarbons benzo (a) anthracene and anthracene were not degraded. Naphthalene and dibenzo (a) anthracene reached degradation rates of 60% and 80%, respectively. Therefore, the consortium tested and the polymer matrix developed are promising for use in bioremediation of environments contaminated by hydrocarbons.

References

Abasian, F.; Lockington, R.; Mallavarapu, M.; & Naidu, R. (2015). A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochemistry and Biotechnology, 176, 670-699.

Alef, K. & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic.

Banerjee, S.; Banerjee, A.; & Sarkar, P. (2018). Statistical optimization of arsenic biosorption by microbial enzyme via Ca-alginate beads. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53 (5), 436–442. https://doi.org/10.1080/10934529.2017.1409009.

Bayat, Z.; Hassanshahian, M.; & Cappello, S. (2015). Immobilization of microbes for bioremediation of crude oil polluted environments: A Mini Review. The Open Microbiology Journal, 9, 48–54. https://doi.org/10.2174/1874285801509010048.

Bučková, M.; Puškarová, A.; Chovanová, K.; Kraková, L.; Ferianc, P.; & Pangallo, D. (2013). A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil. World Journal of Microbiology and Biotechnology, 29 (6), 1085–1098. https://doi.org//10.1007/s11274-013-1277-5.

Chen, L.; Zhao, S.; Yang, Y.; Li, L.; & Wang, D. (2019). Study on degradation of oily wastewater by immobilized microorganisms with biodegradable polyacrylamide and sodium alginate mixture. ACS Omega, 4 (12), 15149–15157. https://doi.org/10.1021/acsomega.9b02045.

Chen, Y.; Yu, B.; Lin, J.; Naidu, R.; & Chen, Z. (2016). Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material. Chemical Engineering Journal, 289 (1), 463–470. https://doi.org/10.1016/j.cej.2016.01.010.

Cunha, C. D.; Rosado, A. S.; Sebastián, G.V.; Seldin, L.; & Weid, I. (2006). Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Applied Microbiology and Biotechnology, 73, 949–959.

De la Cueva, S. C.; Rodríguez, C. H.; Cruz, N. O .S.; Contreras, J. A. R.; & Miranda, J. L. (2016). Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, and Soil Pollution, 227 (91). https://doi.org/10.1007/s11270-016-2789-z.

De Vos, P.; Lazarjani, H. A.; Poncelet, D.; Faas, M. M. (2014). Polymers in cell encapsulation from an enveloped cell perspective. Advanced Drug Delivery Reviews, 67–68, 15–34. http://dx.doi.org/10.1016/j.addr.2013.11.005.

Deka, H. & Lahkar, J. (2016). Biodegradation of benzo(a)anthracene employing Paenibacillus sp. HD1PAH: A novel strain isolated from crude oil contaminated soil. Polycyclic Aromatic Compounds, 37 (2–3), 161–169. https://doi.org/10.1080/10406638.2016.1253593.

Elnashar, M. M. M. (2010). Review Article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61–77. https://doi.org/10.4236/ jbnb.2010.11008.

Elumalai, P.; Parthipan, P.; Karthikeyan, O. P.; & Rajasekar, A. (2017). Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech, 7, 116.

Fareez, I. M.; Lim, S. M.; Mishra, R.K.; & Ramasamy, K. (2015). Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, 72, 1419–1428. https://doi.org/10.1016/j.ijbiomac.2014.10.054.

Gbassi, G. K.; Vandamme, T.; Ennahar, S.; & Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. International Journal of Food Microbiology, 129 (1), 103–105. https://doi.org/10.1016/j.ijfoodmicro.2008.11.012.

Ghazali, F. M.; Rahman, R. Z. A.; Salleh, A. B.; & Basri, M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation, 54 (1), 61–67. https://doi.org/10.1016/j.ibiod.2004.02.002.

Hanson, K. G.; Desai, J. D.; & Desai, A .J. (1993). A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology Techniques, 7 (10), 745–748. https://doi.org/10.1007/BF00152624.

Isaac, P.; Martínez, F. L.; Bourguignon, N.; Sánchez, L .A.; & Ferrero, M.A . (2015). Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. International Biodeterioration and Biodegradation, 101, 23–31. https://doi.org/10.1016/j.ibiod.2015.03.014.

Jackson, D.A . (1993). Stopping rules in Principal Components Analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 2204–2214. https://doi.org/10.2307/1939574.

Jauhari, N.; Mishra, S.; Kumari, B.; Singh, S.N.; Chauhan, P.S.; & Upreti, D.K. (2020). Bacteria induced degradation of anthracene mediated by catabolic enzymes. Polycyclic Aromatic Compounds, 40 (2), 313–325. https://doi.org/10.1080/10406638.2017.1420667.

Karabika, E.; Kallimanis, A.; Dados, A.; Pilidis, G.; Drainas, C.; & Koukkou, A. I. (2009). Taxonomic identification and use of free and entrapped cells of a new Mycobacterium sp., strain Spyr1 for degradation of polycyclic aromatic hydrocarbons (PAHs). Applied Biochemistry and Biotechnology, 159 (1), 155–167. https://doi.org/10.1007/s12010-008-8463-1.

Karigar, C. S. & Rao, S. S.; (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 805187. https://doi.org/10.4061/2011/805187.

Kureel, M. K.; Geed, S. R.; Giri, B. S.; Rai, B. N.; & Singh, R. S. (2017). Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp. M3. Bioresource Technology, 242, 92–100. https://doi.org/10.1016/j.biortech.2017.03.167.

Legendre, P. & Legendre, L. (2012). Numerical Ecology, third ed., Elsevier, Amsterdam.

Li, N.; Xu, H.; Yang, Y.; Xu, X.; & Xue, J. (2019). Preparation, optimization and reusability of immobilized petroleum-degrading bacteria. Environmental Technology (United Kingdom), 1–11 https://doi.org/10.1080/09593330.2019.1703826.

Liu, S-H.; Zeng, Z-T.; Niu, Q-Y.; Xiao, R.; Zeng, G-M.; Liu, Y.; Cheng, M.; Hu, K.; Jiang, L-H.; Tan, X-F.; & Tao, J-J. (2019). Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). Science of the Total Environment, 655, 1279–1287. https://doi.org/10.1016/j.scitotenv.2018.11.272.

Lofthus, S.; Netzer, R.; Lewin, A.S.; Heggeset, T.M.B.; Haugen, T.; & Brakstad, O.G. (2018). Biodegradation of n-alkanes on oil–seawater interfaces at different temperatures and microbial communities associated with the degradation. Biodegradation, 29 (2), 141–157. https://doi.org/10.1007/s10532-018-9819-z.

Maqbool, F.; Wang, Z.; Xu, Y.; Zhao, J.; Gao, D.; Zhao, Y-G.; Bhatti, Z.A.; & Xing, B. (2012). Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, 237–238 (30), 262–269. https://doi.org/10.1016/j.jhazmat.2012.08.038.

Ramadass, K.; Megharaj, M.; Venkateswarlu, K.; & Naidu, R. (2016). Soil bacterial strains with heavy metal resistance and high potential in degrading diesel oil and n-alkanes. International Journal of Environmental Science and Technology, 13 (12), 2863-2874.

Rehm, H. J. & Reiff, I. (1981). Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Advances in Biochemical Engineering, 19, 175–215. https://doi.org/10.1007/3-540-10464-X_18.

Sampaio, C. J. S.; Souza, J. R. B.; Carvalho, G. C.; Quintella, C. M.; & Roque, M. R. A. (2019a). Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida): Implications for NPK fertilizer supplementation. Journal of Environmental Management, 246 (15), 617–624. https://doi.org/10.1016/j.jenvman.2019.06.018.

Sampaio, C. J. S.; Souza, J. R. B.; Damião, A. O.; Bahiense, T. C.; & Roque, M. R. A. (2019b). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a diesel oil-contaminated mangrove by plant growth-promoting rhizobacteria. 3 Biotech, 9 (4). https://doi.org/10.1007/s13205-019-1686-8.

Sampaio, C. J. S., Roque, M. R. A., Souza, J. R. B, Carvalho, G. C., & Vale, T. O. (2019) Patent deposit PI national BR102019013058-0, in secrecy phase.

Shen, T.; Pi, Y.; Xu, N.; Li, Y.; & Lu, J. (2015). Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia. Environmental Sciences: Processes and Impacts, 17 (12), 2022–2033. https://doi.org/10.1039/C5EM00318K.

Simons, K. L.; Sheppard, P. J.; Adetutu, E. M.; Kadali, K.; Juhasz, A. L.; Manefield, M.; Sarma, P. M.; Lal, B.; & Ball, A.S . (2013). Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. Bioresource Technology, 134, 107–116. https://doi.org/10.1016/j.biortech.2013.01.

Su, D.; Li, P .J.; Frank, S.; & Xiong, X. Z. (2006). Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite. Journal of Environmental Sciences (China), 18 (6), 1204–1209. https://doi.org/10.1016/S1001-0742(06)60063-6.

Varjani, S.; & Upasani, V. N. (2020). Soil microcosm study for bioremediation by a crude oil degrading Pseudomonas aeruginosa NCIM 5514. Journal of Environmental Engineering (United States), 146 (5). https://doi.org/10.1061/(asce)ee.1943-7870.0001687.

Wang, Z-Y.; Xu, Y.; Wang, H-Y.; Zhao, J.; Gao, D-M.; Li, F-M.; & Xing, B. (2012). Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere, 22 (5), 717–725. https://doi.org/10.1016/S1002-0160(12)60057-5.

Xu, X.; Zhou, H.; Chen, X.; Wang, B.; Jin, Z.; & Ji, F. (2019). Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent. Chemosphere, 223, 140–147. https://doi.org/10.1016/j.chemosphere.2019.01.196.

Xue, J.; Wu, Y.; Fu, X.; Li, N.; Sun, J.; & Qiao, Y. (2020). Study on degradation characteristics and bacterial community structure changes of immobilized cells in straw-alginate beads in marine environment. Bioresource Technology Reports, 10, 100402. https://doi.org/10.1016/j.biteb.2020.100402.

Zhang, Y.; Gao, W.; Lin, F.; Han, B.; He, C.; Li, Q.; Gao, X.; Cui, Z.; Sun, C.; & Zheng, L. (2018). Study on immobilization of marine oil-degrading bacteria by carrier of algae materials. World Journal of Microbiology and Biotechnology, 34 (6). https://doi.org/10.1007/s11274-018-2438-3.

Zommere, Ž. & Nikolajeva, V. (2017). Immobilization of bacterial association in alginate beads for bioremediation of oil-contaminated lands. Environmental and Experimental Biology, 15, 105-111. https://doi.org/10.22364/eeb.15.09.

Downloads

Published

27/12/2021

How to Cite

SAMPAIO, C. J. S.; SOUZA, J. R. B. de .; CARVALHO, G. C. de .; QUINTELLA, C. M. .; ROQUE, M. R. de A. . Crude oil biodegradation by bacterial cells immobilized on corn starch-alginate beads. Research, Society and Development, [S. l.], v. 10, n. 17, p. e220101724706, 2021. DOI: 10.33448/rsd-v10i17.24706. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24706. Acesso em: 24 jan. 2022.

Issue

Section

Agrarian and Biological Sciences