Assessment of allelopathic potential of the salicylic acid on target plants: Euphorbia heterophylla and Bidens pilosa
DOI:
https://doi.org/10.33448/rsd-v11i1.24863Keywords:
Allelochemicals; Bio-herbicide; Phytotoxicity; Seedling growth.Abstract
Salicylic acid has one of its characteristics the allelopathic potential. The present paper, is a research quantitative in nature aimed to assess the allelopathic potential of salicylic acid to identify the best concentration range for other pure substances. The bioassays were performed in a BOD incubator, seeking to assess the seedling growth by measuring the radicle and hypocotyl length. Each bioassay occurred for 12 days. The concentrations of salicylic acid used in the bioassays were: 1000, 750, 500, 250, 125, and 62.5 ppm and control. The obtained data were submitted to the tests: Kolmogorov-Smirnov normality, the two-way ANOVA with repetition, and Tukey. Based on the results obtained, it was possible to observe that several concentrations demonstrated significant differences, i.e., there is an allelopathic activity in both species (Euphorbia heterophylla and Bidens pilosa). The highlights were for the concentrations of 750 and 1000 ppm for E. heterophylla and 500, 750 and 1000 ppm for B. pilosa. However, there was no significant difference between these concentration groups. The radicle’s length was the part most negatively affected. These results can be used to identify better concentrations for other pure substances, which are usually obtained in small quantities, being useful in the formulation of a product with characteristics of bio-herbicides.
References
Calabrese E. J. & Baldwin L. A. (2002). Applications of hormesis in toxicology, risk assessment and chemotherapeutics. Trends in Pharmacological Sciences 23, 331–337. 10.1016/s0165-6147 (02) 02034-5.
Campos J. A., Peco J. D. & García-Noguero E. (2019). Antigerminative comparison between naturally occurring naphthoquinones and commercial pesticides. Soil dehydrogenase activity used as bioindicator to test soil toxicity. Science of the Total Environment, 694, 133672. 10.1016/j.scitotenv.2019.133672.
Cheng F. & Cheng Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020. 10.3389/fpls.2015.01020.
Chung I. M., Park S. K., Thiruvengadam M., Lee J. H., Kim S. H. & Rajakumar G. (2018). Review of the biotechnological applications of rice allelopathy in agricultural production. Weed Biology and Management, 18, 63–74. 10.1111/wbm.12145.
Elshamy A. I., Abd-Elgawad A. M., El Gendy Aeng & Assaeed A. M. (2019). Chemical Characterization of Euphorbia heterophylla L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on Cenchrus echinatus L. Chemistry & Biodiversity, 16 (5). 10.1002/cbdv.201900051
Farooq N., Abbas T., Tanveer A. & Jabran K. (2020). Allelopathy for Weed Management. In Mérillon J. M. & Ramawat K. G. (Eds), Co-Evolution of Secondary Metabolites. Springer International Publishing, p. 505–519.
Ferreira A. G. & Aquila M. E. A. (2000). Alelopatia: uma área emergente da Ecofisiologia. Revista Brasileira de Fisiologia Vegetal, 12, 175–204.
Gerhards R. & Schappert A. (2020). Advancing cover cropping in temperate integrated weed management. Pest Management Science, 76, 42-46. 10.1002/ps.5639.
Gonçalves V. D., Coelho M. F. B, Camili E. C. & Valentini C. M. A. (2016). Allelopathic potential of Inga laurina leaf extract on lettuce seed germination. Científica, 44, 333-337. 10.15361/1984-5529.2016v44n3p333-337.
Iqbal N., Khaliq A. & Cheema Z. A. (2020). Weed control through allelopathic crop water extracts and S-metolachlor in cotton. Information Processing in Agriculture, 7, 165-172. 10.1016/j.inpa.2019.03.006.
Ji L. L. (2002). Exercise-induced modulation of antioxidant defense. Annals of the New York Academy of Sciences, 959, 82–92. 10.1111/j.1749-6632.2002.tb02085.x.
Junttila O. (1973). Seed and embryo germination in S. vulgaris and S. reflexa as affected by temperature during seed development. Physiologia Plantarum, 29, 264–268. 10.1111/j.1399-3054.1973.tb03103.x.
Kissmann K. G. & Groth D. (1933). Plantas Infestante e nocivas. BASF.
Kong C. H., Xuan T. D., Khanh T. D., Tran H. D. & Trung N. T. (2019). Allelochemicals and Signaling Chemicals in Plants. Molecules (Basel, Switzerland), 24, 2737. 10.3390 / moléculas24152737.
Lorenzi H. (1991). Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, (4a ed.) Plantarum. 640 p.
Ming Y., Zhu Z., Li J., Hu G., Fan X. & Yuan D. (2020). Allelopathic Effects of Castanea henryi Aqueous Extracts on the Growth and Physiology of Brassica pekinensis and Zea mays. Chemistry & Biodiversity, 17. 10.1002 / cbdv.202000135
Oliveira M. C., Ferreira G., Guimarães V. F. & Dias G. B. (2010). Germinação de sementes de atemoia (Annona cherimola mill. × A. squamosa L.) CV ‘Gefner’ submetidas a tratamentos com ácido giberélico (GA3) e ethephon. Revista Brasileira de Fruticultura, 32, 544–554. 10.1590/S0100-29452010005000062.
Ooka J. K. & Owens D. K. (2018) Allelopathy in tropical and subtropical species. Phytochemistry Reviews, 17, 1225–1237. 10.1007/s11101-018-9596-7.
Pereira B. & Souza Jr. T.P. (2005). Adaptação e rendimento físico – considerações biológicas e antropológicas. Revista Brasileira de Ciência e Movimento, 13, 145-152.
Pereira A. S., Shitsuka D. M., Parreira. F. J. Shitsuka R. (2018). Metodologia da pesquisa científica. UFSM
Raskin I. (1992). Role of Salicylic Acid in Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.
Rizzini C. T. (1970). Inibidores de germinação e crescimento em Andira humilis Benth. Anais da Academia Brasileira de Ciências, 329–366.
Silva M. G. F. (2014). Avaliação do potencial alelopático de raízes de capim annoni-2 (Eragrostis plana Nees) e estudo fitoquímico. Universidade Tecnológica Federal do Paraná,
Souza Filho A. P. S, Rodrigues L. R. A & Rodrigues T. J. D. (1997). Efeitos do potencial alelopático de três leguminosas forrageiras sobre três invasoras de pastagens. Pesquisa Agropecuária Brasileira, 32, 165–170.
Vlot A. C., Dempsey D. A. & Klessig D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47, 177–206. 10.1146/annurev.phyto.050908.135202.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gabrielli Monzani de Lima; José Donizetti de Lima; Vanderlei Aparecido de Lima; Michelangelo Muzell Trezzi; Beatriz Helena Lameiro de Noronha Sales Maia; Ana Paula Palaro Klein Hendges; Martha Menin; Sirlei Dias Teixeira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.