Assessment of allelopathic potential of the salicylic acid on target plants: Euphorbia heterophylla and Bidens pilosa

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.24863

Keywords:

Allelochemicals; Bio-herbicide; Phytotoxicity; Seedling growth.

Abstract

Salicylic acid has one of its characteristics the allelopathic potential. The present paper, is a research quantitative in nature aimed to assess the allelopathic potential of salicylic acid to identify the best concentration range for other pure substances. The bioassays were performed in a BOD incubator, seeking to assess the seedling growth by measuring the radicle and hypocotyl length. Each bioassay occurred for 12 days. The concentrations of salicylic acid used in the bioassays were: 1000, 750, 500, 250, 125, and 62.5 ppm and control. The obtained data were submitted to the tests: Kolmogorov-Smirnov normality, the two-way ANOVA with repetition, and Tukey. Based on the results obtained, it was possible to observe that several concentrations demonstrated significant differences, i.e., there is an allelopathic activity in both species (Euphorbia heterophylla and Bidens pilosa). The highlights were for the concentrations of 750 and 1000 ppm for E. heterophylla and 500, 750 and 1000 ppm for B. pilosa. However, there was no significant difference between these concentration groups. The radicle’s length was the part most negatively affected. These results can be used to identify better concentrations for other pure substances, which are usually obtained in small quantities, being useful in the formulation of a product with characteristics of bio-herbicides.

References

Calabrese E. J. & Baldwin L. A. (2002). Applications of hormesis in toxicology, risk assessment and chemotherapeutics. Trends in Pharmacological Sciences 23, 331–337. 10.1016/s0165-6147 (02) 02034-5.

Campos J. A., Peco J. D. & García-Noguero E. (2019). Antigerminative comparison between naturally occurring naphthoquinones and commercial pesticides. Soil dehydrogenase activity used as bioindicator to test soil toxicity. Science of the Total Environment, 694, 133672. 10.1016/j.scitotenv.2019.133672.

Cheng F. & Cheng Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, 1020. 10.3389/fpls.2015.01020.

Chung I. M., Park S. K., Thiruvengadam M., Lee J. H., Kim S. H. & Rajakumar G. (2018). Review of the biotechnological applications of rice allelopathy in agricultural production. Weed Biology and Management, 18, 63–74. 10.1111/wbm.12145.

Elshamy A. I., Abd-Elgawad A. M., El Gendy Aeng & Assaeed A. M. (2019). Chemical Characterization of Euphorbia heterophylla L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on Cenchrus echinatus L. Chemistry & Biodiversity, 16 (5). 10.1002/cbdv.201900051

Farooq N., Abbas T., Tanveer A. & Jabran K. (2020). Allelopathy for Weed Management. In Mérillon J. M. & Ramawat K. G. (Eds), Co-Evolution of Secondary Metabolites. Springer International Publishing, p. 505–519.

Ferreira A. G. & Aquila M. E. A. (2000). Alelopatia: uma área emergente da Ecofisiologia. Revista Brasileira de Fisiologia Vegetal, 12, 175–204.

Gerhards R. & Schappert A. (2020). Advancing cover cropping in temperate integrated weed management. Pest Management Science, 76, 42-46. 10.1002/ps.5639.

Gonçalves V. D., Coelho M. F. B, Camili E. C. & Valentini C. M. A. (2016). Allelopathic potential of Inga laurina leaf extract on lettuce seed germination. Científica, 44, 333-337. 10.15361/1984-5529.2016v44n3p333-337.

Iqbal N., Khaliq A. & Cheema Z. A. (2020). Weed control through allelopathic crop water extracts and S-metolachlor in cotton. Information Processing in Agriculture, 7, 165-172. 10.1016/j.inpa.2019.03.006.

Ji L. L. (2002). Exercise-induced modulation of antioxidant defense. Annals of the New York Academy of Sciences, 959, 82–92. 10.1111/j.1749-6632.2002.tb02085.x.

Junttila O. (1973). Seed and embryo germination in S. vulgaris and S. reflexa as affected by temperature during seed development. Physiologia Plantarum, 29, 264–268. 10.1111/j.1399-3054.1973.tb03103.x.

Kissmann K. G. & Groth D. (1933). Plantas Infestante e nocivas. BASF.

Kong C. H., Xuan T. D., Khanh T. D., Tran H. D. & Trung N. T. (2019). Allelochemicals and Signaling Chemicals in Plants. Molecules (Basel, Switzerland), 24, 2737. 10.3390 / moléculas24152737.

Lorenzi H. (1991). Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas, (4a ed.) Plantarum. 640 p.

Ming Y., Zhu Z., Li J., Hu G., Fan X. & Yuan D. (2020). Allelopathic Effects of Castanea henryi Aqueous Extracts on the Growth and Physiology of Brassica pekinensis and Zea mays. Chemistry & Biodiversity, 17. 10.1002 / cbdv.202000135

Oliveira M. C., Ferreira G., Guimarães V. F. & Dias G. B. (2010). Germinação de sementes de atemoia (Annona cherimola mill. × A. squamosa L.) CV ‘Gefner’ submetidas a tratamentos com ácido giberélico (GA3) e ethephon. Revista Brasileira de Fruticultura, 32, 544–554. 10.1590/S0100-29452010005000062.

Ooka J. K. & Owens D. K. (2018) Allelopathy in tropical and subtropical species. Phytochemistry Reviews, 17, 1225–1237. 10.1007/s11101-018-9596-7.

Pereira B. & Souza Jr. T.P. (2005). Adaptação e rendimento físico – considerações biológicas e antropológicas. Revista Brasileira de Ciência e Movimento, 13, 145-152.

Pereira A. S., Shitsuka D. M., Parreira. F. J.  Shitsuka R. (2018). Metodologia da pesquisa científica. UFSM

Raskin I. (1992). Role of Salicylic Acid in Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.

Rizzini C. T. (1970). Inibidores de germinação e crescimento em Andira humilis Benth. Anais da Academia Brasileira de Ciências, 329–366.

Silva M. G. F. (2014). Avaliação do potencial alelopático de raízes de capim annoni-2 (Eragrostis plana Nees) e estudo fitoquímico. Universidade Tecnológica Federal do Paraná,

Souza Filho A. P. S, Rodrigues L. R. A & Rodrigues T. J. D. (1997). Efeitos do potencial alelopático de três leguminosas forrageiras sobre três invasoras de pastagens. Pesquisa Agropecuária Brasileira, 32, 165–170.

Vlot A. C., Dempsey D. A. & Klessig D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47, 177–206. 10.1146/annurev.phyto.050908.135202.

Downloads

Published

02/01/2022

How to Cite

LIMA, G. M. de .; LIMA, J. D. de .; LIMA, V. A. de .; TREZZI, M. M.; MAIA, B. H. L. de N. S. .; HENDGES, A. P. P. K. .; MENIN, M. .; TEIXEIRA, S. D. . Assessment of allelopathic potential of the salicylic acid on target plants: Euphorbia heterophylla and Bidens pilosa . Research, Society and Development, [S. l.], v. 11, n. 1, p. e6911124863, 2022. DOI: 10.33448/rsd-v11i1.24863. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/24863. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences