Multi-objective flower pollination algorithm applied to 5G vehicular networks communication

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.25020

Keywords:

Vehicular networks; 5G; mmWave; Evolutionary computation; Flower pollination algorithm.

Abstract

The Cellular Vehicle-to-Everything (C-V2X) technology, as a widest version of Vehicular Ad-hoc Network (VANET), aims to interconnect vehicles and any other latest technological infrastructures. In this context, the fifth generation of mobile networks (5G) based on millimeter waves (mmWave) is an excellent alternative for the implementation of vehicular networks, mainly because it is capable of providing high data rates (Gbps) and ultra-low latency, requirements of C-V2X. On the other hand, mmWave signals are highly susceptible to blocking, causing low quality of service (QoS) in VANETs, compromising network functionality and the safety of drivers and pedestrians. Thus, in this work evolutionary computing techniques are applied in the simulation of a 5G vehicular network based on millimeter waves, exploring Media Access Control (MAC) sublayer parameters to optimize packet loss, latency and throughput, in order to optimize inter-vehicular communication. The Multi-objective Flower Pollination Algorithm (MOFPA) was used for this purpose. The results obtained show that the adopted approach can reach results close to the optimal pareto of non-dominated solutions, with a 75% reduction in exploration time in relation to the exhaustive search process. Finally, the performance of the metaheuristics adopted is compared with the non-dominated genetic classification algorithm (NSGA-II) and the multi-objective differential evolutionary algorithm (MODE).

References

Adibi, S., Jain, R., Parekh, S., & Tofighbakhsh, M. (Eds.). (2010). Quality of service architectures for wireless networks: Performance metrics and management. Hershey. Information Science Reference.

Andrade, H. G. V., Rios, M. F. R., Lima, R. N., Lacerda, H. F., & Silva-Filho, A. G. (2018). Multi-objective approaches to improve QoS in vehicular ad-hoc networks. Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications - DIVANet’18.

Atallah, R. F., Khabbaz, M. J., & Assi, C. M. (2015). Vehicular networking: A survey on spectrum access technologies and persisting challenges. Vehicular Communications, 2(3), 125–149. https://doi.org/10.1016/j.vehcom.2015.03.005

Attaran, M. (2021). The impact of 5G on the evolution of intelligent automation and industry digitization. Journal of Ambient Intelligence and Humanized Computing, 1–17. https://doi.org/10.1007/s12652-020-02521-x

Chang, C.-Y., Yen, H.-C., & Deng, D.-J. (2016). V2V QoS Guaranteed Channel Access in IEEE 802.11p VANETs. IEEE Transactions on Dependable and Secure Computing, 13(1), 5–17. https://doi.org/10.1109/tdsc.2015.2399912

Chen, S., Hu, J., Shi, Y., Zhao, L., & Li, W. (2020). A vision of C-V2X: Technologies, field testing, and challenges with Chinese development. IEEE Internet of Things Journal, 7(5), 3872–3881. https://doi.org/10.1109/jiot.2020.2974823

Crawley, E., Nair, R., Rajagopalan, B., & Sandick, H. (1998). A framework for QoS-based routing in the internet. RFC Editor.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation : A Publication of the IEEE Neural Networks Council, 6(2), 182–197. https://doi.org/10.1109/4235.996017

Ge, X., Li, Z., & Li, S. (2017). 5G Software Defined Vehicular Networks. IEEE Communications Magazine, 55(7), 87–93. https://doi.org/10.1109/mcom.2017.1601144

Kayabekir, A. E., Bekdaş, G., Nigdeli, S. M., & Yang, X.-S. (2018). A comprehensive review of the flower pollination algorithm for solving engineering problems. In Nature-Inspired Algorithms and Applied Optimization (pp. 171–188). Springer International Publishing.

Lacerda, H. F., Andrade, H. G. V., & Silva-Filho, A. G. (2018). Improving QoS in Vehicular ad-hoc Networks using a multi-objective optimization algorithm. 2018 IEEE Symposium on Computers and Communications (ISCC).

Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., & Zorzi, M. (2018). End-to-end simulation of 5G mmWave networks. IEEE Communications Surveys & Tutorials, 20(3), 2237–2263. https://doi.org/10.1109/comst.2018.2828880

Rasheed, I., & Hu, F. (2021). Intelligent super-fast Vehicle-to-Everything 5G communications with predictive switching between mmWave and THz links. Vehicular Communications, 27(100303), 100303. https://doi.org/10.1016/j.vehcom.2020.100303

Rawat, D. B., Popescu, D. C., Yan, G., & Olariu, S. (2011). Enhancing VANET performance by joint adaptation of transmission power and contention window size. IEEE Transactions on Parallel and Distributed Systems: A Publication of the IEEE Computer Society, 22(9), 1528–1535. https://doi.org/10.1109/tpds.2011.41

Santos, T., & Xavier, S. (2018). A Convergence Indicator for Multi-Objective Optimisation Algorithms. TEMA. Tendencias Em Matematica Aplicada e Computacional, 19(3), 437. https://doi.org/10.5540/tema.2018.019.03.437

Sheikh, M. S., & Liang, J. (2019). A comprehensive survey on VANET security services in traffic management system. Wireless Communications and Mobile Computing, 2019, 1–23. https://doi.org/10.1155/2019/2423915

Sheng, Z., Pressas, A., Ocheri, V., Ali, F., Rudd, R., & Nekovee, M. (2018). Intelligent 5G vehicular networks: An integration of DSRC and mmWave communications. 2018 International Conference on Information and Communication Technology Convergence (ICTC).

Storck, C., & Duarte-Figueiredo, F. (2019). A 5G V2X ecosystem providing Internet of vehicles. Sensors (Basel, Switzerland), 19(3), 550. https://doi.org/10.3390/s19030550

Tian, Y., Cheng, R., Zhang, X., & Jin, Y. (2017). PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine, 12(4), 73–87. https://doi.org/10.1109/mci.2017.2742868

Tripathi, S., Sabu, N. V., Gupta, A. K., & Dhillon, H. S. (2021). Millimeter-wave and terahertz spectrum for 6G wireless. In Computer Communications and Networks (pp. 83–121). Springer International Publishing.

Yang, X.-S., Karamanoglu, M., & He, X. (2013). Multi-objective flower algorithm for optimization. Procedia Computer Science, 18, 861–868. https://doi.org/10.1016/j.procs.2013.05.251

Zhang, M., Zhao, S., & Wang, X. (2009). Multi-objective evolutionary algorithm based on adaptive discrete Differential Evolution. 2009 IEEE Congress on Evolutionary Computation.

Zugno, T., Drago, M., Giordani, M., Polese, M., & Zorzi, M. (2020). Toward standardization of millimeter-wave vehicle-to-vehicle networks: Open challenges and performance evaluation. IEEE Communications Magazine, 58(9), 79–85. https://doi.org/10.1109/mcom.001.2000041

Downloads

Published

08/01/2022

How to Cite

COELHO, F. J. S. .; HUAMPO, E. G. .; LACERDA, H. F.; FREITAS, A. D. M. de .; SILVA FILHO, A. G. da. Multi-objective flower pollination algorithm applied to 5G vehicular networks communication. Research, Society and Development, [S. l.], v. 11, n. 1, p. e33911125020, 2022. DOI: 10.33448/rsd-v11i1.25020. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25020. Acesso em: 18 dec. 2024.

Issue

Section

Engineerings