The antimicrobial properties of the glycolic extract of Casearia sylvestris Sw. in monotypic biofilm of Candida albicans and Candida glabrata

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.25222

Keywords:

Antimicrobial; Biofilm; Candida albicans; Candida glabrata; Casearia sylvestris Sw.

Abstract

Objectives: The resistance of microorganisms to the misuse of drugs is currently one of the public health problems, making research on natural compounds with antimicrobial activity, such as Casearia sylvestris, necessary. This study aimed to evaluate the antimicrobial activity of the glycolic extract of Casearia sylvestris on standard strains of Candida albicans (ATCC 18804) and Candida glabrata (ATCC 9030) in planktonic cultures, verifying the minimum inhibitory concentration and minimum microbicide concentration (MIC and CMM) and also its action on biofilms. Methodology: The glycolic extract of C. sylvestris, of commercial origin, was obtained at a concentration of 200 mg/ml (20%) eluted in 80% of propylene glycol. The MIC and CMM values were determined by the broth microdilution method, according to the Clinical and Laboratory Standards Institute (CLSI), standards M27-A2, with modifications. Then, tests were started on 48h monotypic biofilms, with broth change every 24h, of these microorganisms. After undergoing treatments, the biofilm was prepared for the MTT metabolic test. Results: Candida albicans presented MMC at 50 mg/mL, in Candida glabrata there was no MIC and MMC. In the MTT test the results showed effectiveness of the concentration of 25 mg/mL on Candida glabrata, with a reduction of ≥ 29%, in Candida albicans there were no significant results in the analyzed concentrations. Conclusion: The extract hawed an antimicrobial effect against the tested genre. We also emphasize the importance of in vitro and in vivo tests that corroborate the results presented, in order to increase the basis for the application of the extract.

References

Arantes, A., Carvalho, E. da S., Medeiros, E. A. S., Farhat, C. K., & Mantese, O. C. (2004). Pediatric risk of mortality and hospital infection. Infection Control and Hospital Epidemiology: The Official Journal of the Society of Hospital Epidemiologists of America, 25(9), 783–785. https://doi.org/10.1086/502478

Bento, T. S., Torres, L. M. B., Fialho, M. B., & Bononi, V. L. R. (2014). Growth inhibition and antioxidative response of wood decay fungi exposed to plant extracts of Casearia species. Letters in Applied Microbiology, 58(1), 79–86. https://doi.org/10.1111/lam.12159

Berman, J., & Krysan, D. J. (2020). Drug resistance and tolerance in fungi. Nature Reviews. Microbiology, 18(6), 319–331. https://doi.org/10.1038/s41579-019-0322-2

Bueno, P. C., Pereira, F. M., Torres, R. B., & Cavalheiro, A. J. (2015). Development of a comprehensive method for analyzing clerodane-type diterpenes and phenolic compounds from Casearia sylvestris Swartz (Salicaceae) based on ultra high performance liquid chromatography combined with chemometric tools. Journal of separation science, 38(10), 1649–1656. https://doi.org/10.1002/jssc.201401421

Cavalheiro, M., & Teixeira, M. C. (2018). Candida biofilms: Threats, challenges, and promising strategies. Frontiers in Medicine, 5. https://doi.org/10.3389/fmed.2018.00028

Silva, A. R., de Andrade Neto, J. B., da Silva, C. R., Campos, R. de S., Costa Silva, R. A., Freitas, D. D., et al. (2016). Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrobial Agents and Chemotherapy, 60(6), 3551–3557. https://doi.org/10.1128/AAC.01846-15

Oliveira, J. R., de Castro, V. C., das Graças Figueiredo Vilela, P., Camargo, S. E. A., Carvalho, C. A. T., Jorge, A. O. C., & de Oliveira, L. D. (2013). Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry. BMC Complementary and Alternative Medicine, 13(1), 208. https://doi.org/10.1186/1472-6882-13-208

Oliveira, J. R., de Jesus, D., Figueira, L. W., de Oliveira, F. E., Pacheco Soares, C., Camargo, S. E. A., et al. (2017). Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Experimental Biology and Medicine (Maywood, N.J.), 242(6), 625–634. https://doi.org/10.1177/1535370216688571

Desai, J. V., Mitchell, A. P., & Andes, D. R. (2014). Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harbor Perspectives in Medicine, 4(10), a019729–a019729. https://doi.org/10.1101/cshperspect.a019729

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002

Douglas, L. J. (2003). Candida biofilms and their role in infection. Trends in Microbiology, 11(1), 30–36. https://doi.org/10.1016/s0966-842x(02)00002-1

Espindola, L. S., Vasconcelos Júnior, J. R. e., de Mesquita, M. L., Marquié, P., de Paula, J. E., Mambu, L., & Santana, J. M. (2004). Trypanocidal activity of a new diterpene from Casearia sylvestris var. lingua. Planta Medica, 70(11), 1093–1095. https://doi.org/10.1055/s-2004-832655

Ferreira, P. M. P., Costa-Lotufo, L. V., Moraes, M. O., Barros, F. W. A., Martins, A. M. A., Cavalheiro, A. J., et al. (2011). Folk uses and pharmacological properties of Casearia sylvestris: a medicinal review. Anais Da Academia Brasileira de Ciencias, 83(4), 1373–1384. https://doi.org/10.1590/s0001-37652011005000040

Ferreira, Paulo Michel Pinheiro, Santos, D. B., Silva, J. do N., Goudinho, A. F., Ramos, C. L. S., Souza, P. C. et al. (2019). Toxicological findings about an anticancer fraction with casearins described by traditional and alternative techniques as support to the Brazilian Unified Health System (SUS). Journal of Ethnopharmacology, 241(112004), 112004. https://doi.org/10.1016/j.jep.2019.112004

Güntzel, A. R. D. C. (2009). Avaliação das atividades farmacológicas de extrato de Casearia sylvestris Sw. http://hdl.handle.net/10737/85

Lara, H. H., Guisbiers, G., Mendoza, J., Mimun, L. C., Vincent, B., Lopez-Ribot, J. L., & Nash, K. L. (2018). Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. International Journal of Nanomedicine, 13, 2697–2708. https://doi.org/10.2147/ijn.s151285

Liu, Q., Niu, H., Zhang, W., Mu, H., Sun, C., & Duan, J. (2015). Synergy among thymol, eugenol, berberine, cinnamaldehyde and streptomycin against planktonic and biofilm-associated food-borne pathogens. Letters in Applied Microbiology, 60(5), 421–430. https://doi.org/10.1111/lam.12401

Mahizan, N. A., Yang, S.-K., Moo, C.-L., Song, A. A.-L., Chong, C.-M., Chong, C.-W., et al. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules (Basel, Switzerland), 24(14), 2631. https://doi.org/10.3390/molecules24142631

Mardegan, R. C. (2007). Inhibitory activity of plant extracts on Candida spp and on proteinases synthesized by Candida albicans. http://www.repositorio.unicamp.br/handle/REPOSIP/289371

Matilde, F. A. V. (2014). Candida glabrata an emerging pathogen? https://comum.rcaap.pt/bitstream/10400.26/13041/1/Matilde%2C%20Filipa %20Alexandra%20Veiga.pdf

Mesquita, M. L., Grellier, P., Mambu, L., de Paula, J. E., & Espindola, L. S. (2007). In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. Journal of Ethnopharmacology, 110(1), 165–170. https://doi.org/10.1016/j.jep.2006.09.015

Moo, C.-L., Yang, S.-K., Yusoff, K., Ajat, M., Thomas, W., Abushelaibi, A., et al. (2020). Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current Drug Discovery Technologies, 17(4), 430–447. https://doi.org/10.2174/1570163816666190304122219

Nobile, C. J., & Johnson, A. D. (2015). Candida albicans Biofilms and Human Disease. Annual Review of Microbiology, 69(1), 71–92. https://doi.org/10.1146/annurev-micro-091014-104330

Paula-Ramos, L., da Rocha Santos, C. E., Camargo Reis Mello, D., Nishiama Theodoro, L., De Oliveira, F. E., Back Brito, G. N., et al. (2016). Klebsiella pneumoniae planktonic and biofilm reduction by different plant extracts: In vitro study. TheScientificWorldJournal, 2016, 3521413. https://doi.org/10.1155/2016/3521413

Pereira, Flaviane G., Marquete, R., Domingos, L. T., Rocha, M. E. N., Ferreira-Pereira, A., Mansur, E., & Moreira, D. L. (2017). Antifungal activities of the essential oil and its fractions rich in sesquiterpenes from leaves of Casearia sylvestris Sw. Anais Da Academia Brasileira de Ciencias, 89(4), 2817–2824. https://doi.org/10.1590/0001-3765201720170339

Polke, M., Hube, B., & Jacobsen, I. D. (2015). Candida survival strategies. Advances in Applied Microbiology, 91, 139–235. https://doi.org/10.1016/bs.aambs.2014.12.002

Ribeiro, S. M., Fratucelli, É. D. O., Bueno, P. C. P., de Castro, M. K. V., Francisco, A. A., Cavalheiro, A. J., & Klein, M. I. (2019). Antimicrobial and antibiofilm activities of Casearia sylvestris extracts from distinct Brazilian biomes against Streptococcus mutans and Candida albicans. BMC Complementary and Alternative Medicine, 19(1), 308. https://doi.org/10.1186/s12906-019-2717-z

Rodrigues, A. M. S., De Paula, J. E., Degallier, N., Molez, J. E., & Espindola, L. S. (2006). Larvicidal activity of some Cerrado plant extracts against Aedes aegypti. Journal of the American Mosquito Control Association, 22(2), 314–317. https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2

Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules (Basel, Switzerland), 21(7), 836. https://doi.org/10.3390/molecules21070836

Santos, A. G., Ferreira, P. M., Vieira Júnior, G. M., Perez, C. C., Gomes Tininis, A., Silva, G. H., Bolzani, V., Costa-Lotufo, L. V., Pessoa, C., & Cavalheiro, A. J. (2010). Casearin X, its degradation product and other clerodane diterpenes from leaves of Casearia sylvestris: evaluation of cytotoxicity against normal and tumor human cells. Chemistry & biodiversity, 7(1), 205–215. https://doi.org/10.1002/cbdv.200800342

Santos, P. B. do R. E. D., Ávila, D. da S., Ramos, L. de P., Yu, A. R., Santos, C. E. da R., Berretta, A. A., et al. (2020). Effects of Brazilian green propolis extract on planktonic cells and biofilms of multidrug-resistant strains of Klebsiella pneumoniae and Pseudomonas aeruginosa. Biofouling, 36(7), 834–845. https://doi.org/10.1080/08927014.2020.1823972

Sarpietro, M. G., Di Sotto, A., Accolla, M. L., & Castelli, F. (2015). Interaction of β-caryophyllene and β-caryophyllene oxide with phospholipid bilayers: Differential scanning calorimetry study. Thermochimica Acta, 600, 28–34. doi:10.1016/j.tca.2014.11.029

Tsui, C., Kong, E. F., & Jabra-Rizk, M. A. (2016). Pathogenesis of Candida albicans biofilm. Pathogens and Disease, 74(4), ftw018. https://doi.org/10.1093/femspd/ftw018

Xie, C., Sun, L., Meng, L., Wang, M., Xu, J., Bartlam, M., & Guo, Y. (2015). Sesquiterpenes from Carpesium macrocephalum inhibit Candida albicans biofilm formation and dimorphism. Bioorganic & Medicinal Chemistry Letters, 25(22), 5409–5411. https://doi.org/10.1016/j.bmcl.2015.09.013

Published

13/01/2022

How to Cite

ASSIS, T. R. T. de; SANTOS , P. B. do R. E. dos; SILVA, A. M. da; OLIVEIRA, L. D. de; PALMA, A. L. do R. . The antimicrobial properties of the glycolic extract of Casearia sylvestris Sw. in monotypic biofilm of Candida albicans and Candida glabrata. Research, Society and Development, [S. l.], v. 11, n. 1, p. e51811125222, 2022. DOI: 10.33448/rsd-v11i1.25222. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25222. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences