Rational use of antimicrobials and impact on the microbiological resistance profile in times of pandemic by Covid-19
DOI:
https://doi.org/10.33448/rsd-v11i1.25382Keywords:
Resistance; Covid-19; Pseudomonas aeruginosa; Klebsiella pneumoniae; Antimicrobials; Carbapenem.Abstract
The rational use of antimicrobials has been one of the main measures to prevent the increase in antimicrobial resistance in the world. The aim of the present study was to evaluate the use of antimicrobials in a private hospital in Fortaleza/Brazil and to correlate with the increasing antimicrobial resistance. Quantitative data on bacterial infections, microbiological profile and use of antimicrobials were determined, obtained from patients treated in the sectors, between January 2016 and August 2021. 2,733 reports were issued to evaluate the use of antibiotics in 2020 and in 2021 there were 2,044. During 2020, the use of antimicrobials was more frequent between May and June, and in 2021 in March and April, these months reflecting patients with prolonged hospitalization after Covid-19 and multiple secondary bacterial infections. During this period, there is also a greater prescription of Polymyxin B and glycopeptides. When evaluating the Gram-negative sensitivity profile for P. aeruginosa, a drastic reduction in the last year of sensitivity to Piperacillin/tazobactam and Carbapenens, as well as to Polymyxin B (91.7% sensitivity) is observed. For K. pneumoniae, the results were even worse, showing high resistance to Carbapenens and Polymyxin B, whose sensitivity of the latter was only 76.2%, making the choice of therapeutic options difficult. A reduction in sensitivity to Cefatzidime/avibactam was detected for P. aeruginosa, K. pneumoniae and Serratia sp. It was concluded that the increase in the prescription of broad-spectrum antimicrobials during the Covid-19 pandemic may have had an impact on the increase in bacterial resistance, mainly for Gram negatives.
References
Adebisi, Y. A., Alaran, A. J., Okereke, M., Oke, G. I., Amos, O. A., Olaoye, O. C., Oladunjoye, I., Olanrewaju, A. Y., Ukor, N. A., & Lucero-Prisno, D. E. (2021). Covid-19 and Antimicrobial Resistance: A Review. Infect Dis (Auckl). 14:11786337211033870.
Andrade, C. W. Q., Silva, K. S. B., Santana, M. M. R., Oliveira, A. V., Guimarães, M. D., & Naue, C. R. (2021). Etiologia e resistência de isolados bacterianos de hemoculturas da Sala de Cuidados Intermediários de um Hospital Universitário em Pernambuco. Research, Society and Development, 10(7), e37510716605.
Aquino, D. S. (2008). Por que o uso racional de medicamentos deve ser uma prioridade? Ciênc. saúde coletiva, 13, 733-736.
Bastos, I. D. M., Bastos, B. D. M., Silva, C. F., Silva, K. S. B., & Naue, C. R. (2020). Perfil bacteriano de amostras microbiológicas de pacientes internados na Clínica Cirúrgica de um Hospital Universitário de Pernambuco. VITTALLE-Revista de Ciências da Saúde, 32(1), 108-121.
Dandolini, B. W., Batista, L. B., Souza, L. H. F., Galato, D., & Piovezan, A. P. (2012). Uso racional de antibióticos: uma experiência para educação em saúde com escolares. Ciênc. saúde coletiva, 17(5), 1323-1331.
de Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million People Die a Year due to Antimicrobial Resistance by 2050? PLoS medicine, 13(11), e1002184.
FDA, CDRH, CBER. (2017). Use of real-world evidence to support regulatory decision-making for medical devices. Guidance for industry and food and drug administration staff preface public comment.
Fiol, F. S. D., Barberato-Filho, S., Lopes, L. C., & Toledo, M. I. (2010) Level of patient information on antibiotic use. Braz. J. Pharm. Sci., São Paulo, v. 46, n. 3, p. 437-444.
Gomes, A. A. G., Silva, M. R. da Garcês, T. C. de C. S., Pinto, A. S. B., Andrade, S. M. O. de, Saraiva, E. R., Brito, S. M. S., Gadelha, D. dos S. G., & Andrade, A. R. O. de. (2020). Infecções relacionadas à assistência em saúde em unidades de terapia intensiva no Brasil. Revista Eletrônica Acervo Saúde, 12(11), e4665–e4665.
Gusatti, C. de S., Ferreira, A. E., Fuentefria, D. B., & Corção, G. (2009). Resistência a β-lactâmicos em Acinetobacter spp isolados de efluente hospitalar no sul do Brasil. Revista da Sociedade Brasileira de Medicina Tropical, 42(2), 183–187
Hawkey, P. M. (2015). Multidrug-resistant Gram-negative bacteria: a product of globalization. Journal of Hospital Infection, 89(4).
Helke, K. L., McCrackin, M. A., Galloway, A. M., Poole, A. Z., Salgado, C. D., & Marriot, B. P. (2016). Effects of antimicrobial use in agricultural animals on drug-resistant foodborne salmonellosis in humans: A systematic literature review. Critical Reviews in Food Science and Nutrition, 57(3).
Hsu, J. (2020). How Covid-19 is accelerating the threat of antimicrobial resistance. BMJ, 369.
Kalpoe, S., Sonnenberg, E., Factor, S. H., Martin, J. R., Patel, T. S. G., & Huprikar, S. (2012). Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transplantation, 18(4).
Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with Covid-19: a systematic review and meta-analysis. Journal of Infection.
Lee, Y. J., Liu, H. Y., Lin, Y. C., Sun, K. L., Chun, C. L., & Hsuehe, P. R. (2010). Fluoroquinolone resistance of Pseudomonas aeruginosa isolates causing nosocomial infection is correlated with levofloxacin but not ciprofloxacin use. International Journal of Antimicrobiol Agents, 35(3).
Luepke, K. H., Suda, K. J., Boucher, S. H., Russo, R. L., Bonney, M. W., Hunt, T. D., & Mohr III, J. F. (2013). Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and social implications. Pharmacotherapy, 37(1).
Marra, A. R., Camargo, L. F. A., Pignatari, A. C. C., Sukiennik, T., Behar, P. R. P., Medeiros, E. A. S., Ribeiro, J., Girão, E., Correa, L., Guerra, C., Brites, C., Pereira, A. P., Carneiro, I., Reis, M., Souza, Tranchesi, R., Barata, C. U., Edmond, M. B. and Brazilian SCOPE Study group. (2011). Nosocomial bloodstream infections in Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide surveillance study. Clin Microbiol. May;49(5):1866-71.
Mota, D. M., Silva, M. G. C., Sudo, E. C., & Ortun, V. (2008). Uso racional de medicamentos: uma abordagem econômica para tomada de decisões. Ciênc. saúde coletiva, 13, 589-601.
Nieuwlaat, R., Mbuagbaw, L., Mertz, D., Burrows, L. L., Bowdish, D. M. E., Moja, L., Wright, G. D., & Schünemann, H. J. (2021). Coronavirus Disease 2019 and Antimicrobial Resistance: Parallel and Interacting Health Emergencies. Clin Infect Dis. 72(9):1657-1659.
Oliveira, A. C., Kovner, C. T., & da Silva, R. S. (2010) Nosocomial infection in an intensive care unit in a Brazilian university hospital. Revista Latino-Americana de Enfermagem, 18(2).
O'Neill J. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance; 2014.
Opatowski, M., Brun-Buisson, C., Touat, M., Salomon, J., Guillemot, D., Tuppin, P., & Watier, L. (2021). Antibiotic prescriptions and risk factors for antimicrobial resistance in patients hospitalized with urinary tract infection: a matched case-control study using the French health insurance database (SNDS). BMC Infect Dis 21, 571.
Pinto, M. C. X., Ferre, F., & Pinheiro, M. L. P. (2012). Potentially inappropriate medication use in a city of Southeast Brazil. Braz. J. Pharm. Sci., 48(1), 79-86.
Rauber, C., Feltrin, M. R., & Piovezan, A. P. (2009). Evaluation of antibiotics dispensing profile in Tubarão, Santa Catarina, Brazil. Braz. J. Pharm. Sci., 45(4), 787-793.
Rawson, T. M., Moore, L. S., Zhu, N., Ranganathan, N., Skolimowska, K., Gilchrist, M. & Holmes, A. (2020). Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support Covid-19 antimicrobial prescribing. Clinical Infectious Diseases.
Rivera-Jacinto, M., Rodríguez-Ulloa, C., Flores Clavo, R., Serquén López, L., & Arce Gil, Z. (2015). Betalactamasas de espectro extendido tipo TEM y CTX-M en Klebsiella spp y Escherichia coli aisladas de superficies de ambientes hospitalarios. Revista Peruana de Medicina Experimental y Salud Pública, 32, 752-755.
Ricas, R. V., Marques, T. C., & Yamamoto, A. C. A. (2013). Perfil de resistência de Acinetobacter baumannii a antimicrobianos em um hospital universitário de Cuiabá-MT. Infarma Ciências Farmacêuticas, 25(4), 178-181.
Rodrigues, T. S., dos Santos, A. M. R., Lima, P. C., Moura, M. E. B., Goiano, P. D. D. O. L., & da Silva Fontinele, D. R. (2018). Resistência bacteriana a antibióticos na Unidade de Terapia Intensiva: revisão integrativa. Revista Prevenção de Infecção e Saúde, 4.
Sanches, F. K., Volcão, L. M., von Groll, A., Silva Junior, F. M. R., Silva, P. E. A., & Ramos, D. F. (2020). Uso de antibióticos e associação com resistência bacteriana em um hospital no Sul do Brasil. Research, Society and Development, 9(6), e154963405.
Silva, K. M. R., Oliveira, R. M. A., Araújo, A. J. R. O., Paula, C. C. C., Tavares, P. S., Santana, F. S., Marinho, A. L. S., Melo, D. T., Velôso, D. S., Vieira, J. F. P. N., Silva, A. M., Silva, H. J. N., Silva, A. E. P., Silva, M. R., Mattos, M. L. F. R. (2021). Implicações do uso de antibióticos durante a pandemia de Covid-19. Research, Society and Development, 10(7), e20210715684.
Zangirolami-Raimundo, J., Echeimberg, J. de O., & Leone, C. (2018). Research methodology topics: Cross-sectional studies. Journal of Human Growth and Development, 28(3), 356-360.
Song, J. W., & Chung, K. C. (2010). Observational studies: cohort and case-control studies. Plastic and reconstructive surgery, 126(6), 2234–2242.
Zhang, J., Ma, X., Yu, F., Liu, J., Zou, F., Pan, T., & Zhang, H. (2020). Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. & Guan, L. (2020). Clinical course and risk factors for mortality of adult in patients with Covid-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), P1054-1062.
Zhu, H., Swierstra, J., Wu, C., Girard, G., Choi, Y. H., van Wamel, W., & van Wezel, G. P. (2014). Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. Microbiology, 160(8), 1714-1725.
World Health Organization. (2019) No Time to Wait: Securing the future from drug-resistant infections. http://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/
World Health Organization (WHO). High levels of antibiotic resistance found worldwide, new data shows. http://www.who.int/news-room/detail/29-01-2018-high-levels-of-antibiotic-resistance-found-worldwide-new-data-shows.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rafael Ferreira Mesquita; Cicero Allan Landim de Oliveira Lima; Luan Victor Almeida Lima; Bruno Pinheiro Aquino; Melissa Soares Medeiros
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.