Effect of use of methyltriethylamonium chloride individually and combined with n-butylamine on the characteristics of the ZSM-12 zeolite crystallization process

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.25402

Keywords:

ZSM-12 zeolite; Structure-directing agent; Methyltriethylammonium chloride; n-butylamine; Physicochemical properties.

Abstract

The improvement of the structure of the ZSM-12 zeolite has been extensively studied, due to its shape selectivity properties, acidity and hydrothermal stability, with this zeolite being used in a wide range of applications, such as adsorbent, ion exchanger and in important reactions in the petrochemical area. In this work, the effect on the crystallization characteristics and physicochemical properties of the ZSM-12 zeolite using methyltriethylammonium chloride, individually, and combined with n-butylamine, as structure-directing agent was studied. The syntheses were carried out at 160 and 170 °C between 48 and 144 h in static medium. The samples obtained were characterized by the techniques of X-ray diffraction, thermal analysis, nitrogen adsorption-desorption and temperature-programmed ammonia desorption. The simultaneous use of methyltriethylammonium chloride and n-butylamine, at a ratio of 0.2, promoted the obtainment of highly crystalline ZSM-12, with an increase in the microporous area and acidity, denoting an improvement in the physicochemical properties of this zeolite.

References

Barrer, R. M. (1948). Synthesis of a zeolitic mineral with chabazite-like sorptive properties, Journal of the Chemical Society, 2, 127–132. https://doi.org/10.1039/JR9480000127

Cao, P., Li, B., Sun, W. & Zhao, L. (2021). Understanding the Zeolites Catalyzed Isobutane Alkylation based on Their Topology Effects on the Reactants Adsorption, Chemical Engineering Science, 250, 117387.https://doi.org/10.1016/j.ces.2021.117387

Carvalho, K. T. G. & Urquieta-Gonzalez, E. A. (2015). Microporous–mesoporous ZSM-12 zeolites: Synthesis by using a soft template and textural, acid and catalytic properties, Catalysis Today, 243, 92-102.https://doi.org/10.1016/j.cattod.2014.09.025

Catizzone, E., Cirelli, Z., Aloise, A., Lanzafame, P., Migliori, M. & Giordano, G. (2018). Methanol conversion over ZSM-12, ZSM-22 and EU-1 zeolites: from DME to hydrocarbons production, Cataysis. Today, 304, 39-50. https://doi.org/10.1016/j.cattod.2017.08.037

Chen, Y., Li, C., Chen, X., Liu, Y. & Liang, C. (2018). Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane, Microporous and Mesoporous Materials, 268, 216-224. https://doi.org/10.1016/j.micromeso.2018.04.033

Chokkalingam, A., Kawagoe, H., Watanabe, S., Moriyama, Y., Komura, K., Kubota, Y., Kim, J.-H., Seo, G., Vinu, A. & Sugi, Y. (2013). Isopropylation of biphenyl over ZSM-12 zeolites, Journal of Molecular Catalysis A: Chemical, 367, 23-30. https://doi.org/10.1016/j.molcata.2012.10.018

Dimitrov, L., Mihaylov, M., Hadjiivanov, K. & Mavrodinova, V. (2011). Catalytic properties and acidity of ZSM-12 zeolite with different textures, Microporous and Mesoporous Materials, 143(2-3), 291-301. https://doi.org/10.1016/j.micromeso.2011.03.009

Figueiredo, B. R., Cardoso, S. P., Portugal, I., Rocha, J., Silva, C. M. (2018). Inorganic Ion Exchangers for Cesium Removal from Radioactive Wastewater, Separation & Purification Reviews, 47(4), 306-336.

https://doi.org/10.1080/15422119.2017.1392974

Gopal, S., Yoo, K. & Smirniotis, P. G. (2001). Synthesis of Al-rich ZSM-12 using TEAOH as template, Microporous and Mesoporous Materials, 49(1-3), 149-156. https://doi.org/10.1016/S1387-1811(01)00412-7

Glotov, A., Demikhova, N., Rubtsova, M., Melnikov, D.., Tsaplin, D., Gushchin, P., Egazar’yants, S., Maximov, A., Karakhanov, E. & Vinokurov, V. (2021). Bizeolite Pt/ZSM-5:ZSM-12/Al2O3 catalyst for hydroisomerization of C-8 fraction with various ethylbenzene content, Catalysis Today, 378, 83-95. https://doi.org/10.1016/j.cattod.2021.02.008

Han, B., Lee, S.-H., Shin, C.-H., Cox, P. A. & Hong, S. B. (2005). Zeolite Synthesis Using Flexible Diquaternary Alkylammonium Ions (CnH2n+1)2HN+(CH2)5N+H(CnH2n+1)2 with n = 1−5 as Structure-Directing Agents, Chemistry of Materials, 17(3), 477–486. https://doi.org/10.1021/cm048418+

Holland, B. T., Abrams, L. & Stein, A. (1999). Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks, Journal of the American Chemical Society, 121(17), 4308–4309. https://doi.org/10.1021/ja990425p

Imyen, T., Saenluang, K., Dugkhuntod, P. & Wattanakit, C. (2021). Investigation of ZSM-12 nanocrystals evolution derived from aluminosilicate nanobeads for sustainable production of ethyl levulinate from levulinic acid esterification with ethanol, Microporous and Mesoporous Materials, 312, 110768. https://doi.org/10.1016/j.micromeso.2020.110768

Kasunič, M., Legiša, J., Meden, A., Loga, N. Z., Beale, A. M. & Golobič, A. (2009). Crystal structure of pure-silica ZSM-12 with tetraethylammonium cations from X-ray powder diffraction data, Microporous and Mesoporous Materials, 122(1-3), 255-263. https://doi.org/10.1016/j.micromeso.2009.03.008

Kore, R. & Srivastava, R. (2012). Synthesis of zeolite Beta, MFI, and MTW using imidazole, piperidine, and pyridine based quaternary ammonium salts as structure directing agents, RSC Advances, 2(26), 10072-10084. https://doi.org/10.1039/C2RA20437A

Kosareva, Gerasimov, D. N., Maslov, I. A., Pigoleva, I. V., Zaglyadova, S. V. & Fadeev, V. V. (2021). Effect of the Zeolite Type on Catalytic Performance in Dewaxing of the Diesel Fraction under Sour Conditions, Energy & Fuels, 35(19), 16020–16034. https://doi.org/10.1021/acs.energyfuels.1c01484

Kulikov, L. A., Tsaplin, D. E., Knyazeva, M. I., Levin, I. S., Kardashev, S. V., Filippova, T. Y., Maksimov, A. L. & Karakhanov, E. A. (2019). Effect of Template Structure on the Zeolite ZSM-12 Crystallization Process Characteristics, Petroleum Chemistry, 59(S1), S60–S65. https://doi.org/10.1134/S0965544119130097

Kwon, S., Kim, C., Han, E., Lee, H., Cho, H. S. & Choi, M. (2021). Relationship between zeolite structure and capture capability for radioactive cesium and strontium, Journal of Hazardous Materials, 408, 124419. https://doi.org/10.1016/j.jhazmat.2020.124419

Lee, H. J., Kim, S. H., Kim, J. H., Park, S. J. & Cho, S. J. (2014). Synthesis and characterization of zeolites MTT and MFI, with controlled morphologies using mixed structure directing agents, Microporous and Mesoporous Materials, 195, 205-215. https://doi.org/10.1016/j.micromeso.2014.04.035

Li, C., Li, L., Wu, W., Wang, D., Toktarev, A. V., Kikhtyanin, O. V. & Echevskii, G.V. (2011). Highly selective synthesis of 2,6-dimethylnaphthalene over alkaline treated ZSM-12 zeolite, Procedia Engineering, 18, 200-205. https://doi.org/10.1016/j.proeng.2011.11.032

Li, J., Lou, L.-L., Xu, C. & Liu, S. (2014). Synthesis, characterization of Al-rich ZSM-12 zeolite and their catalytic performance in liquid-phase tert-butylation of phenol, Catalysis Communications, 50, 97-100. https://doi.org/10.1016/j.catcom.2014.03.011

Lok, B. M., Marcus, B. K. & Angell, C. L. (1986). Characterization of zeólita acidity. II. Measurement of zeólita acidity by ammonia temperature programmed desorption and FT-IR Spectroscopy techniques. Zeolites, 6(3), 185-194. https://doi.org/10.1016/0144-2449(86)90046-1

Masoumifard, N., Kaliaguine, S. & Kleitz, F. (2016). Synergy between structure direction and alkalinity toward fast crystallization, controlled morphology and high phase purity of ZSM-12 zeolite, Microporous and Mesoporous Materials, 227, 258-271. https://doi.org/10.1016/j.micromeso.2016.02.044

Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C. & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers, Angewandte Chemie International Edition, 54(46), 13724-13728. https://doi.org/10.1002/anie.201506822

Mehla, S., Krishnamurthy, K. R., Viswanathan, B., John, M., Niwate, Y., Kumar, S. A. K., Pai, S. M. & Newalkar, B. L. (2013). n-Hexadecane hydroisomerization over BTMACl/TEABr/MTEABr templated ZSM-12, Microporous and Mesoporous Materials, 177, 120-126. https://doi.org/10.1016/j.micromeso.2013.05.001

Milton, R. M. (1959). Molecular sieve adsorbents, U.S. pat. 2,882,243.

Moini, A., Schmitt, K. D., Valyocsik, E. W. & Polomski, R. F. (1994). The Role of Diquaternary Cations as Directing Agents in Zeolite Synthesis, Studies in Surface Science and Catalysis, 84, 23-28. https://doi.org/10.1016/S0167-2991(08)64075-6

Počkaj, M., Meden, A., Logar, N. Z., Rangus, M., Mali, G., Lezcano-Gonzalez, I., Beale, A. M. & Golobič, A. (2018). Structural investigations in pure-silica and Al-ZSM-12 with MTEA or TEA cátions, Microporous and Mesoporous Materials, 263, 236-242. https://doi.org/10.1016/j.micromeso.2017.12.015

Rani, P., Srivastava, R. & Satpati, B. (2016). One-Step Dual Template Mediated Synthesis of Nanocrystalline Zeolites of Different Framework Structures, Crystal Growth & Design, 16(6), 3323–3333. https://doi.org/10.1021/acs.cgd.6b00299

Rodeghero, E., Pasti, L., Nunziante, G., Chenet, T., Gigli, L., Plaisier, J. R. & Martucci, A. (2019). Highlighting the capability of zeolites for agro-chemicals contaminants removal from aqueous matrix: Evidence of 2-ethyl-6-methylaniline adsorption on ZSM-12, American Mineralogist, 104(3), 317–324. https://doi.org/10.2138/am-2019-6754

Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., Kennedy, G. J. & Doren, D. J. (1999). On the Role of Small Amines in Zeolite Synthesis, The Journal of Physical Chemistry B, 103(34), 7175-7183. https://doi.org/10.1021/jp991913m

Rosinski, E. J. & Rubin, M. K. (1974). Crystalline Zeolite ZSM-12, U.S. Patent 3 832 449.

Sanhoob, M., Muraza, O., Yamani, Z. H., Al-Mutairi, E. M., Tago, T., Merzougui, B. & Masuda, T. (2014). Synthesis of ZSM-12 (MTW) with different Al-source: Towards understanding the effects of crystallization parameters, Microporous and Mesoporous Materials, 194, 31-37. https://doi.org/10.1016/j.micromeso.2014.03.033

Sanhoob, M. A., Muraza, O., Yoshioka, M., Qamaruddin, M. & Yokoi, T. (2018). Lanthanum, cerium, and boron incorporated ZSM-12 zeolites for catalytic cracking of n-hexane, Journal of Analytical and Applied Pyrolysis, 129, 231-240. https://doi.org/10.1016/j.jaap.2017.11.007

Santos, M. R. F., Pedrosa, A. M. G. & Souza, M. J. B. (2016). Oxidative desulfurization of thiophene on TiO2/ZSM-12 zeolite, Materials Research, 19(1), 24-30. https://doi.org/10.1590/1980-5373-MR-2015-0130

Silva, A. O. S., Souza, M. J. B., Pedrosa, A. M. G., Coriolano, A. C. F., Fernandes Jr. V. J. & Araujo, A. S. (2017). Development of HZSM-12 zeolite for catalytic degradation of high-density polyethylene, Microporous and Mesoporous Materials, 244, 1-6. https://doi.org/10.1016/j.micromeso.2017.02.049

Toktarev, A. V. & Ione, K. G. (1997). Studies on crystallization of ZSM-12 type zeolite, Studies in Surface Science and Catalysis, 105, 333-340. https://doi.org/10.1016/S0167-2991(97)80573-3

Treacy, M. M. J. & Higgins, J. B. (2007). Collection of Simulated XRD Powder Patterns for Zeolites, (5th. ed.), Elsevier.

Veselý, O., Pang, H., Vornholt, S. M., Mazur, M. & Yu, J. (2019). Opanasenko, M., Eliášová, P. Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods, Catalysis Today, 324, 123-134. https://doi.org/10.1016/j.cattod.2018.06.010

Wang, B., Tian, Z., Li, P., Wang, L., Xu, Y., Qu, W., Ma, H., Xu, Z. & Lin, L. (2009). Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy, Materials Research Bulletin, 44(12), 2258-2261. https://doi.org/10.1016/j.materresbull.2009.07.017

Wei, X. & Smirniotis, P. G. (2006). Development and characterization of mesoporosity in ZSM-12 by desilication, Microporous and Mesoporous Materials, 97(1–3), 97-106. https://doi.org/10.1016/j.micromeso.2006.01.024

Downloads

Published

14/01/2022

How to Cite

GOUVEIA, E. G. C.; ALENCAR, S. L.; SILVA, B. J. B. da; URBINA, M. M.; SOLANO, J. da R. S.; SILVA, A. O. S. da. Effect of use of methyltriethylamonium chloride individually and combined with n-butylamine on the characteristics of the ZSM-12 zeolite crystallization process. Research, Society and Development, [S. l.], v. 11, n. 1, p. e54311125402, 2022. DOI: 10.33448/rsd-v11i1.25402. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25402. Acesso em: 18 nov. 2024.

Issue

Section

Engineerings