Intestinal microbiome of birds and its importance

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25583

Keywords:

Poultry; Lactobacillus; Microbiota; Immune System; Tenericutes.

Abstract

The bird's gastrointestinal tract has a microbiological diversity, beneficial bacteria play a role in digestion and absorption, contribute to the immune system and competition against pathogens that make up approximately 10% of the intestinal microbiota. The most abundant phylum are Actinobacteria, Firmicutes, Fusobacteria and Bacteriodetes, such microorganisms are essential for bird health. The pathogenic microorganisms are Proteobacteria, Protozoa, Apicomplexa, Tenericutes and Firmicutes, colonize the lumen of the bird's gastrointestinal tract without causing damage, however, when there is dysbiosis the pathogens multiply causing lesions in the intestinal mucosa and can cause enteric disorders, sometimes irreversible. The beneficial microbiota is able to stimulate the immune system with the production of T cells, decreasing the inflammatory process and the production of immunoglobulin A, G and M. Bifidobacterium influence the proliferation of macrophages, enhancing the animal's immune system, in addition to producing bacteriocins which inhibits the multiplication of pathogens (Salmonella spp. and Clostridium perfringens). Lactobacillus spp. stimulate the secretion of immunoglobulins, lactate and acetate and inhibit the adhesion of pathogens to the intestinal epithelium. Bacteroides spp. and Bifidobacterium spp. they institute volatile fatty acids and suppress the toxicity of Salmonella spp., Escherichia coli and Campylobacter spp. The Bacteroides fragilis species stimulates the production of T cells in order to reduce inflammation. The main objective is to review the available scientific information about the intestinal microbiome of birds and its importance, detailing its composition and correlation with the immune system.

References

Adedokun, S. A. & Olojede, O. C. (2019). Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science, 5, 348. https://doi.org/10.3389 / fvets.2018.00348

Ajuwon, K. M. (2015). Toward a better understanding of mechanisms of probiotics and prebiotics action in poultry species. Journal Applied Poultry Research, 25, 277-283. https://doi.org/10.3382/japr/pfv074

Albornoz, L. A. L., Nakano, V., & Campos, M. J. A. (2014). Clostridium perfringens e a enterite necrótica em frangos: principais fatores de virulência, genéticos e moleculares. Brazilian Journal of Veterinary Research and Animal Science, 51(3), 178-193. http://dx.doi.org/10.11606/issn.1678-4456.v51i3p178-193

Apajalahti, J., & Vienola, K. (2016). Interação entre microbiota intestinal de frango e digestão de proteínas. Animal Feed Science and Technology, 221. https://doi.org/323- 330. 10.1016/j.anifeedsci.2016.05.004

Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Meier-Kolthoff, J. P., Klenk, H. P., Clément, C., Ouhdouch, Y., & Wezel, G. P. (2015). Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 80(1), 1-43. https://doi.org/10.1128/MMBR.00019-15

Barrios, M. A., Saini, K. J., Rude, C. M., Beyer, R. S., Fung, D. Y. C., Bavaresco, C., Nunes, A. P., Forgiarini, J., Alves, D. A., Xavier, E. G., Lopes, D. C. N., & Rol, V. F. B. (2019). Morfometria intestinal e qualidade óssea de codornas Japonesas alimentadas por um período prolongado com produtos do óleo de soja. Archives of Veterinary Science, 24, 72-82.

Binda, C., Lopetuso, L. R., Rizzatti, G., Gibiino, G., Cennamo, V., & Gasbarrini, A. (2018). Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 50(5), 421-428. https://doi.org/10.1016/j.dld.2018.02.012

Blandford, L. E., Johnston, E. L., Sanderson, J. D., Wade, W. G., & Lax, A. J. (2019). Promoter orientation of the immunomodulatory Bacteroides fragilis capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD). Gut Microbes, 10(5), 569-577. https://doi.org/10.1080/19490976.2018.1560755

Bogucka, J., Dankowiakowska, A., Elminowska-Wenda, G., Sobolewska, A., Jankowski, J., Szpinda, M., & Bednarczyk, M. (2017). Performance and small intestine morphology and ultrastructure of male broilers injected in ovo with bioactive substances, Annals of Animal Science, 17, 179-195. https://doi.org/10.1515/aoas-2016-0048

Borda-Molina, D., Roth, C., Hérnandez-Arriaga, A., Rissi, D., Vollmar, S., Rodehutscord, M., Bennewitz, J., & Camarinha-Silva, A. (2020). Effects on the Ileal Microbiota of Phosphorus and Calcium Utilization, Bird Performance, and Gender in Japanese Quail. Animals, 10, 885. https://doi.org/10.3390/ani10050885

Bortoluzzi, C., Vieira, B. S., Hofacre, C. & Applegate, T. J. (2019). Effect of different challenge models to induce necrotic enteritis on the growth performance and intestinal microbiota of broiler chickens. Poultry Science, 98, 2800-2812. https://doi.org/10.3382 / ps / pez084

Brandl, K., Kumar, V. & Eckmann, L. (2017). Gut-liver axis at the frontier of host-microbial interactions. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312, 413-419. https://doi.org/10.1152 / ajpgi.00361.2016

Brian, B., Oakley, H. S., Lillehoj, M. H., Kogut, W. K., Kim, J. J., Maurer, A., Pedroso, M. D., Lee, S. R., Collet, T. J., & Johnson, N. A. C. (2014). O microbioma gastrointestinal de frango. FEMS: Microbiology Letters, 360, 100–112.

Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A. M., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012

Celi, P., Verlhac, V., Calvo, E. P., Schmeisser, J., & Kluenter, A. M. (2019). Biomarkers of gastrointestinal functionality in animal nutrition and health. Animal Feed Science and Technology, 250, 9-31. https://doi.org/10.1016/j.anifeedsci.2018.07.012

Christofoli, M., Souza, C. S., Costa, T. F., Alexandrino, S. L. S. A., Faria, P. P., Rezende, C. S. M., Santos, F. R., Minafra, C. S., & Pereira, P. S. (2020). Microbiota intestinal benéfica e prejudicial na avicultura: Revisão. Research, Society and Development, 9, e43973667. http://dx.doi.org/10.33448/rsd-v9i7.3667

Dez, M., Nowaczek, A., Urban-Chmiel, R., Stępień-Pyśniak, D., & Wernicki, A. (2018). Probiotic potential of Lactobacillus isolates of chicken origin with anti-Campylobacter activity. Journal Veterinary Medical Science, 80(8), 1195-1203. https://doi.org/10.1080 / 10.1292/jvms.18-0092

Du, X., Xiang, Y., Lou, F., Tu, P., Zhang, X., Hu, X., Lyu, W., & Xiao, Y. (2020). Microbial Community and Short-Chain Fatty Acid Mapping in the Intestinal Tract of Quail. Animals (Basel), 10(6), 1006. https://doi.org/10.3390/ani10061006

Ducatelle, R., Goossens, E., Meyer, F., Eeckhaut, V., Antonissen, G., Haesebrouck, F., & Immerseel, F. V. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 49, 43. https://doi.org/10.1186 / s13567-018-0538-6

Emam, M., Hashem, Y. M., El-Hariri, M., & Jakeen, El-Jakee. (2020). Detection and antibiotic resistance of Mycoplasma gallisepticum and Mycoplasma synoviae among chicken flocks in Egypt. Veterinary World, 13(7), 1410-1416. http://dx.doi.org/10.14202/vetworld.2020.1410-1416

Feitosa, T. J. O., Silva, C. E., Souza, R. G., Lima, C. D. S., Gurgel, A. C., Oliveira, L. L. G., Nóbrega, J. G. S., Carvalho Jr, J. E. M., Melo, F. O., Santos, W. B. M., Feitoza, T. O., Costa, T. F., Brandão, P. A., & Minafra, C. S. (2020). Microbiota intestinal das aves de produção: revisão bibliográfica. Research, Society and Development, 9, e42952779. http://dx.doi.org/10.33448/rsd-v9i5.2779

Figueira, S. V., Mota, B. P., Leonídio, A. R. A., Nascimento, G. M., & Andrade, M. A. (2014). Microbiota intestinal das aves de produção. Enciclopédia Biosfera, Centro Científico Conhecer, Goiânia, 10(18), 2181. Recuperado de https://www.conhecer.org.br/enciclop/2014a/AGRARIAS/microbiota.pdf.

Garcia, G. D., Carvalho, M. A. R., Diniz, C. G., Marques, J. L., Nicoli, J. R., & Farias, L. M. (2012). Isolation, identification and antimicrobial susceptibility of Bacteroides fragilis group strains recovered from broiler faeces. British Poultry Science, 53, 71-76. https://doi.org/0.1016/j.vetmic.2014.04.019.

Golder, H. M., Geier, M. S., Forder, R. E. A., Hynd, P. I., & Hughes, R. J. (2011). Effects of necrotic enteritis challenge on intestinal micro-architecture and mucin profile. British Poultry Science, 52, 500-506. http://dx.doi.org/10,1080/00071668.2011.587183

Goldstein, E. J. C., Tyrrell, K. L., & Citron, D. M. (2015). Lactobacillus species: taxonomic complexity and controversial susceptibilities. Clinical Infectious Diseases, 60(2), 98-107. https://doi.org/10.1093/cid/civ072

Guamán, R. A., Morocho, M. C., Yunga, V. H., Herrera, R. H., & Sanchez, G. E. (2017). Cambios en la microbiota intestinal de las aves y sus implicaciones prácticas. Centro de Biotecnología, 6, 98-108. Recuperado de https://www.researchgate.net/publication/323152630_Cambios_en_la_microbiota_intestinal_de_las_aves_y_sus_implicaciones_practicas.

Gupta, R. S., Sawnani, S., Adeolu, M., Alnajar, S., & Oren, A. (2018). Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie Van Leeuwenhoek, 111(9), 1583-1630. https://doi.org/ 10.1007/s10482-018-1047-3

Hazrati, S., Rezaeipour, V., & Asadzadeh, S. (2020). Effects of phytogenic feed additives, probiotic and mannan-oligosaccharides on performance, blood metabolites, meat quality, intestinal morphology, and microbial population of Japanese quail. Brazilian Journal of Poultry Science, 61, 132-139. https://doi.org/ 10.1080/00071668.2019.1686122

Helmy, Y. A., Krücken, J., Abdelwhab, E. S. M., Himmelstjerna, G. S., & Hafez, M. (2017). Molecular Diagnosis and Characterization of Cryptosporidium Spp. In Turkeys and Chickens in Germany Reveals Evidence for Previously Undetected Parasite Species. PLoS One, 12, e0177150. https://doi.org/10.1371/journal.pone.0177150

Holubova, N., Sak, B., Hlásková, L., Květoňova, D., Hanzal, V., Rajský, D., Rost, M., McEvoy, J., & Kváč, M. (2018). Host Specificity and Age-Dependent Resistance to Cryptosporidium Avium Infection in Chickens, Ducks and Pheasants. Experimental Parasitology, 191, 62-65. https://doi.org/10.1016/j.exppara.2018.06.007

Hu, W., Zhang, W., Shah, S. W. A., Ishfaq, M., & Li, J. 2021. Mycoplasma gallisepticum infection triggered histopathological changes, oxidative stress and apoptosis in chicken thymus and spleen. Developmental & Comparative Immunology, 114, 103832. https://doi.org/10.1016/j.dci.2020.103832

Ishfaq, M., Zhang, W., Shah, S. W. A., Wu, Z., Wang, J., Ding, L., & Li, J. (2019). The effect of Mycoplasma gallisepticum infection on energy metabolism in chicken lungs: Through oxidative stress and inflammation. Microbial Pathogenesis, 138, 103848. https://doi.org/10.1016/j.micpath.2019.103848

Kogut, M. H. (2018). O efeito da modulação do microbioma na saúde intestinal de aves domésticas. Ciência e Tecnologia de Ração Animal, 250, 32-40. https://doi.org/10.1016/j.anifeedsci.2018.10.008

Kogut, M. H., & Arsenault, N. J. (2016). Editorial: Gut Health: The New Paradigm in Food Animal Production. Frontiers in Veterinary Science, 31. https://doi.org/10.3389/fvets.2016.00071

Kollarcikova, M., Kubasova, T., Karasova, D., Crhanova, M., Cejkova, D., Sisak, F., & Rychlik, I. (2019). Use of 16S rRNA gene sequencing for prediction of new opportunistic pathogens in chicken ileal and cecal microbiota. Poultry Science, 98, 2347-2353. https://doi.org/10.3382/ps/pey594.

Kosmann, R. C. (2018). Impacto da adição dietética de antibiótico melhorador de desempenho e probiótico sobre a saúde intestinal e diversidade da microbiota intestinal de frangos de corte (Dissertação de Mestrado). Universidade Federal do Paraná, Palotina, Brasil.

Kraimi, N., Calandreau, L., Biesse, M., Rabot, S., Guitton, E., Velge, P., & Leterrier, C. (2018). Absence of Gut Microbiota Reduces Emotional Reactivity in Japanese Quails (Coturnix japonica). Frontiers in Physiology, 9, 603. https://doi.org/10.3389/fphys.2018.00603

Lacey, J. A., Johanesen, P. A., Lyras, M., & Moore, R. J. (2016). Diversidade genômica de cepas associadas à enterite necrótica de clostridium perfrigens: uma revisão. Patologia aviária, 45. https://doi.org/10.1080/03079457.2016.1153799

Lugli, G. A., Mangifesta, M., Duranti, S., Anzalone, R., Milani, C., Mancabelli, L., Alessandri, G., Turroni, F., Ossiprandi, MC., Sinderen, V., & Ventura, M. (2018). Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Systematic and Applied Microbiology, 41, 173-183. https://doi.org/10.1016 / j.syapm.2018.01.002

Machado, L. S., Nascimento, E. R., Pereira, V. L. A., Abreu, D. L. C., & Barreto, M. L. (2012). Revisão: Micoplasmoses aviárias. Enciclopédia Biosfera, Centro Científico Conhecer, Goiânia, 8(15). Recuperado de http://www.conhecer.org.br/enciclop/2012b/ciencias%20agrarias/revisao.pdf

Mahrose, K. M., Elhack, M. E. A., Mahgoub, S. A., & Attia, F. A. M. (2019). Influences of stocking density and dietary probiotic supplementation on growing Japanese quail performance. Anais da Academia Brasileira de Ciências, 91, e20180616. http://dx.doi.org/10.1590/0001-3765201920180616

Martínez, I., Perdicaro, D. J., Brown, A. W., Hammons, S., Carden, T. J., Carr, T. P., & Walter, J. (2013). Alterações induzidas pela dieta do metabolismo do colesterol no hospedeiro provavelmente afetarão a composição da microbiota intestinal em hamsters. Microbiologia Aplicada e Ambiental, 79, 516-524. https://doi.org/10.1128 / aem.03046-12

Oden, L. A., Lee, J. T., Pohl, S. K., Klein, A. E., Anderson, A. S., Dougherty, S. D., Broussard, C. T., Fitz-Coy, S. H., Newman, L. J., & Caldwell, D. J. (2012). Influence of diet on oocyst output and intestinal lesion development in replacement broiler breeders following live oocyst coccidiosis vaccination. Journal of Applied Poultry Research, 21, 445-459. https://doi.org/10.3382/japr.2010-00264

Okamoto, A. S., Andreatti Filho, R. L., Rocha, T. S., & Milbradt, E. L. (2011). Transference in vitro of the resistance to the antimicrobials between Escherichia coli, Lactobacillus spp. and Salmonella enteritidis isolated from chickens. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 63, 1149-1153. https://doi.org/10.1590/S0102-09352011000500015

Oliveira, A. V. B., Silva, R. A., Araújo, A. S., Brandão, P. A., & Costa, F. B. (2011). Padrões microbiológicos da carne de frango de corte – referencial teórico. Revista Verde, 6(3), 1-16. Recuperado de https://www.gvaa.com.br/revista/index.php/RVADS/article/view/705/621

Paixão, L. A., & Castro, F. F. S. (2016). A colonização da microbiota intestinal e sua influência na saúde do hospedeiro. Revista Ciência da Saúde, 14, 85-96. https://doi.org/10.5102/ucs.v14i1.3629

Pickler, L., Santin, E., & Silva, A. V. S. (2011). Alternativas aos antibióticos para equilibrar a microbiota gastrointestinal de frangos. Archives of Veterinary Science, 16, 1-13. http://dx.doi.org/10.5380/avs.v16i3.18300

Quinn, P. J., Markey, B. K., Carter, M. E., Donnelly, W. J., & Leonard, F. C. (2007). Microbiologia Veterinária e doenças infecciosas. (1a ed.). Jones & Bartlett. Tradução Weiss, LHN e Weiss, DN. Artmed, Porto Alegre.

Ramakrishna, C., Kujawski, M., Chu, H., Li, L., Mazmanian, S. K., & Cantin, E. M. (2019). Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nature Communications, 10(1), 2153. https://doi.org/10.1038 / s41467-019-09884-6

Reis, T. L., & Vieites, F. M. (2019). Antibiótico, prebiótico, probiótico e simbiótico em rações de frangos de corte e galinhas poedeiras. Ciência Animal, 29(3), 133-147. Recuperado de http://www.uece.br/cienciaanimal/dmdocuments/x%2005.%20REVIS%C3%83O%20DE%20LITERATURA%202019.pdf

Sahin, O., Kassem, I. I., Shen, Z., Lin, J., Rajashekara, G., & Zhang, Q. (2015). Campylobacter in Poultry: Ecology and Potential Interventions. Avian Diseases, 59, 185-200. https://doi.org/10.1637/11072-032315-Review

Salwan, R. & Sharma, V. (2020). Molecular and biotechnological aspects of secondary metabolites in actinobacteria. Microbiological Research, 231, e126374. https://doi.org/10.1016/j.micres.2019.126374

Schets, F. M., Jacobs-Reitsma, W. F., Plaats, R. Q. J., Heer, L. K., Hoek, A. H. A. M., Hamidjaja, R. A., Husman, A. M. R., & Blaak, H. (2017). Prevalence and Types of Campylobacter on Poultry Farms and in Their Direct Environment. Journal Water Health, 15, 849-862. https://doi.org/10.2166/wh.2017.119

Shojadoost, B., Vince, A. R., & Prescott, J. F. (2012). A indução experimental bem-sucedida de enterite necrótica em frangos por Clostridium perfringens: uma revisão crítica. Pesquisa Veterinária, 43, 74. https://doi.org/10.1186 / 1297-9716-43-74

Shokryazdan, P., Jahromi, M. F. J., Liang, J. B., Ramasamy, K., Sieo, C. C., & Ho, Y. W. (2017). Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS One, 12(5): e0175959. https://doi.org/10.1371/journal.pone.0175959

Skennerton, C. T., Haroon, M. F., Briegel, A., Shi, J., Jensen, G. J., Tyson, G. W., & Orphan, V. J. (2016). Phylogenomic analysis of Candidatus ‘Izimaplasma' species: free-living representatives from a Tenericutes clade found in methane seeps. The ISME Journal, 10(11), 2679-2692. https://doi.org/10.1038/ismej.2016.55

Sommer, F., & Bäckhed, F. (2013). The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology, 11, 227-238. https://doi.org/10.1038 / nrmicro2974

Souza, L. T. (2017). Clostridium perfringens: Uma revisão (Dissertação de Mestrado). Universidade Federal de Minas Gerais, Belo Horizonte, Brasil.

Su, H., McKelvey, J., Rollins, D., Zhang, M., Brightsmith, D. J., Derr, J., & Zhang, S. (2014). Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?. Plos One, 9, e99826. https://doi.org/10.1371 / journal.pone.0099826

Sureshkumar, S., Lee, H. C., Jung, S. K., Kim, D., Oh, K. B., Yang, H., Jo, Y. J., Lee, H. S., Lee, S., & Byun, S. J. (2020). Inclusion of Lactobacillus salivarius strain revealed a positive effect on improving growth performance, fecal microbiota and immunological responses in chicken. Archivos Microbiology, 203(2), 847-853. https://doi.org/10.1007/s00203-020-02088-3

Wang, Y., Huang, Jiao-Mei., Zhou, Ying-Li., Almeida, A., Finn, R. D., Danchin, A., & He, Li-Sheng. (2020). Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics, 21(1), 408. https://doi.org/10.1186/s12864-020-06807-4

Wilkinson, N., Hughes, R. J., Aspden, W. J., Chapman, J., Moore, R. J., & Stanley, D. (2016). The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Applied Microbiology Biotechnology, 100, 4201-4209. https://doi.org/10.1007/s00253-015-7280-z

Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96, 1387-1393. http://dx.doi.org/10.3382 / ps / pew372

Xu, B., Liu, R., Ding, M., Zhang, J., Sun, H., Liu, C., Lu, F., Zhao, S., Pan, Q., & Zhang, X. (2020). Interaction of Mycoplasma synoviae with chicken synovial sheath cells contributes to macrophage recruitment and inflammation. Poultry Science, 99(11), 5366-5377. https://doi.org/10.1016/j.psj.2020.08.003

Zawadzki, F. (2016). Microbiologia Veterinária Aplicada. (3a ed.) Editora e Distribuidora Educacional S.A. Guanabara Koogan, Londrina.

Zebeli, B. U. M., Magowan, E., Hollmann, M., Ball, M. E. E., Molnár, A., Witter, K., Ertl, R., Hawken, R. J., Lawlor, P. G., O'Connell, N. E., Aschenbach, J., & Zebeli, Q. (2018). Differences in intestinal size, structure, and function contributing to feed efficiency in broiler chickens reared at geographically distant locations. Poultry Science, 97, 578-591. https://doi.org/10.3382 / ps / pex332

Zhang, W., Liu, Y., Zhang, Q., Shah, S. W. A., Wu, Z., Wang, J., Ishfaq, M., & Li, J. (2020). Mycoplasma gallisepticum Infection Impaired the Structural Integrity and Immune Function of Bursa of Fabricius in Chicken: Implication of Oxidative Stress and Apoptosis. Frontiers Veterinary Science, 7, 225. https://doi.org/10.3389/fvets.2020.00225

Zhou, Bian-Hua., Jia, Liu-Shu., Wei, Shan-Shan., Ding, Hai-Yan., Yang, Jing-Yun., & Wang, Hong-Wei. (2020). Effects of Eimeria tenella infection on the barrier damage and microbiota diversity of chicken cécum. Poultry Science, 99(3), 1297-1305. https://doi.org/10.1016/j.psj.2019.10.073

Zhou, H., Yu, B., Gao, J., Htoo, J. K., & Chen, D. (2018). Regulation of intestinal health by branched‐chain amino acids, Animal Science Journal, 89, 3-11. https://doi.org/10.1111 / asj.12937

Published

23/01/2022

How to Cite

CRUZ, L. C. F. .; COSTA, T. F. .; SAMPAIO, S. A.; DIAS DA SILVA, N. G.; ABREU, J. M. de; BORGES, K. F.; SALES, G. M. .; ALEXANDRINO, S. L. de S. A. .; SANTOS, F. R. dos; MINAFRA, C. S. . Intestinal microbiome of birds and its importance. Research, Society and Development, [S. l.], v. 11, n. 2, p. e22411225583, 2022. DOI: 10.33448/rsd-v11i2.25583. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25583. Acesso em: 5 jan. 2025.

Issue

Section

Review Article