Cluster analysis applied to the Human Development Index (HDI) of Brazilian States
DOI:
https://doi.org/10.33448/rsd-v11i2.25747Keywords:
Mahalanobins; Methods; Brazilian States; Cluster.Abstract
This study aims to compare the performance of each method (hierarchical and non-hierarchical) of the grouping formed by several HDI from the 27 brazilian states, through the cluster analysis technique. As well as determining how many states there are in each formed group, to thus specify which technique best represents the data. Data from Atlas Brasil 2013 were used in relation to the 2010 HDI. For cluster analysis, the Mahalanobins matrix was used with the hierarchical method, from the data obtained, we applied the simple linkage methods, complete, average, ward liaison and a non-hierarchical method through the K-means method, the conphenetic correlation coefficient was also applied to measure the degree of fit between the original similar matrices and the resulting matrix of simplification provided by the grouping method. However, the method that best represents the data was the complete link. When grouping the states, the similarity between the HDI-R, HDI-L and HDI-S variables was considered this relationship formed similar groups between the connections from different regions of Brazil.
References
Albuquerque, M. A., & de Oliveira Barros, K. N. N. (2020). Determinação do número de grupos em análise de agrupamento via de raio de influência. Brazilian Journal of Development, 6(6), 38342-38355.
Albuquerque, M. A., Barros, K. N. N. O., Gouveia, J. F., & Ferreira, R. L. C. (2016). Determination and validation of group numbers in a cluster analysis: A case study applied to forestry science. Acta Scientiarum. Technology, 38(3), 339-344.
Albuquerque, M. A. & Barros, K. N. N. O. (2020). Introdução à Análise de Agrupamento: teoria e prática com aplicações em R. [e-book]. Campina Grande. Ed.EDUEPB.http://eduepb.uepb.edu.br/download/introducao-a-analise-de-agrupamento-teoria-e-pratica-com-aplicacoes-em-r/?wpdmdl=997&masterke y=5e97904980fc9
Albuquerque, T. M., Araujo, G. A. B., Caminha, B. L., Albuquerque, M. L., & Albuquerque, M. A. (2016). Measures of association in epidemiological studies: smoking mothers and low birth weight children in the city of Campina Grande–PB. Acta Scientiarum. Health Sciences, 38(2), 179-84.
Alves, L. B., Belderrain, M. C., & Scarpel, R. A. (2007). Tratamento multivariado de dados por análise de correspondência e análise de agrupamentos. Anais do 13º encontro de iniciação científica e pós-graduação do ITA-XIII ENCITA. São José dos Campos-SP.
Braga, A. C., de Oliveira, M. A., Costa, J. C. Z., & Bueno, R. L. P. (2017). Estudo da Correlação entre o Índice de Desenvolvimento Humano (Idh) e os Tributos Arrecadados nos Estados Brasileiros. Interfaces Científicas-Humanas e Sociais, 5(3), 69-84.
Barroso, L. P., & Artes, R. (2003). Análise multivariada. Lavras: Ufla, 151.
Campos, S. L S. (2019) Busca não supervisionada de padrões por técnicas de agrupamento clássica e nebulosa.
Costa, G. D. (2019). Análise multivariada de países da América do Sul por meio de Indicadores socioeconômicos.NascimentO, J.M.P.:
Gomes, L. M. (2020). Violência obstétrica: perspectiva de puérperas atendidas em um Hospital Universitário-HCU UFU.
Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical analysis (Vol. 5, No. 8). Upper Saddle River, NJ: Prentice hall.
Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis (Vol. 344). John Wiley & Sons
Martin, N., & Maes, H. (1979). Multivariate analysis. London: Academic press.
Nascimento, J. M. P. (2019) Análise de Agrupamento Aplicado aos Dados de Violência no Brasil. UFU,
Oliveira Barros, K. N. N., de Albuquerque, M. A., dos Santos Gomes, A., & Dantas, D. R. G. (2020). Análise de agrupamentos exploratória dos usuários do Programa Multidisciplinar de Tratamento do Tabagismo do HUAC, Campina Grande–PB. Research, Society and Development, 9(8), e825986532-e825986532.
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria. Disponível em: http://www.R-project.org/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Emanuela Rodrigues do Nascimento; Mácio Augusto de Albuquerque; Kleber Napoleão Nunes de Oliveira Barros; Patrícia Silva Nascimento Barros
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.