Application of chitosan on physalis

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25825

Keywords:

Crustacean exoskeleton; Resistance inducer; Physalis peruviana L.; Solanaceae.

Abstract

Cultivation of small fruits such as blackberry, raspberry, blueberry, strawberry, and physalis is rapidly growing in Brazil, mainly due to small producers who seek income diversification. The aim of this study was to evaluate the effect of foliar application of different doses of chitosan on the physicochemical properties of Physalis peruviana L. Two experiments were conducted: i) field (FE); and ii) greenhouse (GE). Four doses of chitosan (0.1, 0.2, 0.3, and 0.4 L 100L-1) and a control were used as treatments. We evaluated fruit diameter (FD), fruit length (FL), calyx length (CL), and calyx diameter (CD) - mm; fruit mass - g; soluble solids content (SS) - °Brix; titratable acidity (TA) - % of citric acid; SS/TA ratio; and fruit firmness - N. Foliar application of chitosan to field-grown physalis plants significantly increased fruit mass, length, and diameter, as well as fruit SS and TA content. However, in a protected environment, the application of chitosan had less effect on the properties evaluated. Fruit firmness was not affected by chitosan application. Negative correlations (P<0.001) between fruit mass and firmness (r=-0.57) and SS/TA ratio (r=-0.61) were observed. SS/TA ratio was also negatively correlated with TA (r=-0.82), FL(r=-0.61), and FD (r=-0.68). High and significant correlations were observed between fruit mass and TA, FL, and FD. Foliar application of chitosan has a positive effect on both agronomic and chemical properties and can be an excellent alternative natural fertilizer for physalis plants when applied in doses up to 0.2 L 100 L-1.

References

Abdel-Mawgoud, A. M. R., Tantawy, A. S., El-Nemr, M. A., Sassine, Y. N. (2010). Growth and yield responses of strawberry plants to chitosan application. European Journal of Scientific Research. 39 (1), 170–177.

Amerany, F. E., Rhazi, M., Wahbi, S., Taourirte, M., Meddich, A. (2020). The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Scientia Horticulturae, 261, doi.org/10.1016/j.scienta.2019.109015.

Arnaud, T. M. S., Stamford, T. C. M., Stamford, T. L. M., Stamford, N. P. (2016). Produção, propriedades e aplicações da quitosana na agricultura e em alimentos: Biotecnologia Aplicada à Agro&Indústria. 1ed. (Livro eletrônico), 503-528.

Bautista-Banos, S., Hernández-Lauzardo, A. N., Valle, M. G., López, M., Barka, E. M., Molina, E. B., Wilson, C. L. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25, 108-118. doi: 10.1016/j.cropro.2005.03.010.

Berger, L., Stamford; T., Stamford, N. (2011). Perspectivas para o uso da quitosana na agricultura. Revista Iberoamericana de Polímeros. 12 (4), 195-215.

Bittelli, M., Flury, M., Campbell, G., Nichols, E. (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology. 107, 167-175.

Caviglione, J. K., Kiikl, L. R., Aramori, P. H., Oliveira, D. (2000). Cartas climáticas do Paraná. Londrina – PR: 1 CD-ROM. IAPAR, 2000.

Chitarra, M. I. F., Chitarra, A.B. (2005). Pós-colheita de frutas e hortaliça: Fisiologia e Manuseio. 2. ed. Lavras: UFLA, p.783.

Core Team, R. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. (2018). Sistema Brasileiro de Classificação de solos. 5 ed., p.356. Embrapa solos Brasília - DF.

Fai, A. E. C., Stamford, T C. M., Stamford-Arnaud, T. M., Santa-Cruz, P. A., Silva, M .C. F., Campos-Takaki, G. M., Stamford, T. L. M. (2011). Physico chemical characteristics and functional properties of chitin and chitosan produced by mucor circinelloides using yam bean as substrate. Molecules. 16, 7143-7154.

Ferreira, D. F. (2008). Um programa para análises e ensino de estatística. Revista Científica Symposium, Lavras. 6 (2), 36-41. doi: 10.3390/molecules16087143.

Fischer, G., Almanza-Merchán, P. J., Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura. 36 (1), 001-015. doi: https://doi.org/10.1590/0100-2945-441/13.

Gayler, S., Leser, C., Priesack, E., Treutter, D. (2004). Modelling the effect of environmental factors on the “trade off” between growth and defensive compounds in young Apple trees. Springer Berlin / Heidelberg. Trees-Struct. Funct. 18 (3), 363-371.

Guan, Y., Hu, J., Wang, X., Shao, C. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science A. 10(6), 427–433. doi: 10.1631/jzus.B0820373.

Hammer, O., Harper, D. A. T., Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4 (1), 1-9.

Instituto Adolfo Lutz. (2008). Normas Analíticas do Instituto Adolfo Lutz. Métodosquímicos e físicos para a análise de alimentos. 3 ed. p.533, São Paulo.

Ke, L., Yang, L. X., Lisha, P. (2001). Effects of carboxymethyl chitosan on key enzymes activities of nitrogen metabolism and grain protein contents in rice. Journal Hunan Agricultural University. 27 (6), 421–424.

Kuhn, O. J., Pascholati, S. F. (2010). Custo adaptativo da indução de resistência em feijoeiro mediada pela rizobactériaBacillus cereusou acibenzolar-S-metil: atividade de enzimas, síntese de fenóis e lignina e biomassa. Summa Phytopathologica. 36 (2), 107-114.

Kumar, M. N. R. (2000). A review of chitin and chitosan applications. React. Funct. Polym.46 (1), 1-27. doi: 10.1016/S1381-5148(00)00038-9.

Kurtz, M. C., Cruz, A. H., Retamoso, V., Drehmer, P. B.; Silveira, V., Kirsten, V.R. (2010). Quitosana na redução de colesterol e perda de peso: uma revisão da literatura. Jornada Interdisciplinar em Saúde. Santa Maria, RS: UNIFRA. doi: 10.21877/2448-3877.201700553.

Lei, C., Ma, D., Pu, G., Qiu, X., Du, Z., Wang, H., Li, G., Ye, H., Liu, B. (2011). Foliar application of chitosan activates artemisinin bio-synthesis in Artemisia annua L. Industrial Crop sand Products. 33 (1), 176-182. doi:10.1016/j.indcrop.2010.10.001.

Machado, T. F., Monteiro, E. R., Tiecher, A. (2019). Estabilidade química, físico-química e antioxidante de polpa de Physalis pasteurizada e não pasteurizada sob congelamento. Brasilian Journal of Food Technology. 22, e2017149. doi: 10.1590/1981-6723.14917.

Maro, L.A.C., Pio, R., Guedes, M.N.S., Abreu, C.M.P., Moura, P.H.A. (2014). Environmental and genetic variation in the post-harvest quality of raspberries in subtropical areas in Brazil. Acta Scientiarum. Agronomy. 36 (3), 323-328. doi: 10.4025/actasciagron.v36i3.18050.

Marchioretto, L. D. R., Rossi, A. D., Conte, E. D. (2020). Chemical root pruning improves quality and nutrient uptake of Cape Gooseberry (Physalis peruviana) seedlings. Scientia Horticulturae. 261. doi: 10.1016/j.scienta.2019.108948.

Mier-Giraldo, H., Diaz-Barrera, L. E., Delgado-Murcia, L. G., Valero-Valdivieso, M. F., Cáez-Ramírez, G. (2017). Cytotoxic and immunomodulatory potential activity of Physalis peruviana fruit extracts on cervical cancer (HeLa) and fibroblast (L929) cells. Journal of Evidence-based Complementary & Alternative Medicine. 22 (4), 777-787. doi: 10.1177/2156587217718751.

Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M.R., Ashrafuzzaman, M., Naher, L. (2012). Effectof foliar application of chitosan on grow thand yield in okra. Australian Journal of Crop Science. 6 (5), 918–921.

Muniz, J., Kretzschmar, A. A., Rufato, L., Pelizza, T. R., Marchi, T., Duarte, A. E., Lima, A.P.F., Garanhani, F. (2011). Sistemas de condução para o cultivo de Physalis no planalto catarinense. Revista Brasileira de Fruticultura. 33 (3), 830-838. doi: 10.1590/S0100-29452011005000083.

Muniz, J., Kretzschmar, A. A., Rufato, L., Pelizza, T. R., Rufato, A. R.; Marcelo, T. A. (2014). General aspects of Physalis culltivation. Ciência Rural. 44 (6), 964-970. doi: 10.1590/S0103-84782014005000006

Nascimento, W. M. O., Tomé, A. T., Oliveira, M. S. P., Müller, C. H., Carvalho, J.E.U. (2003). Seleção de progênies de maracujazeiro-amarelo (Passiflora edulisf. flavicarpa) quanto à qualidade de frutos. Revista Brasileira de Fruticultura. 25, 186–188.

Puente, L., Pinto, M. C., Castro, E., Cortés, M. (2011). Physalis peruviana L, the multiple properties of a highly functional fruit: A review. Food Research International. 44, 1733–1740.

Rabea, E. I., Badawy, M. E. T., Stevens, C., Smagghe, G., Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 4 (3), 1457-1465. doi: 10.1021/bm034130m.

Rodrigues, F. A., Penoni, E. S., Soares, J. D. R., Silva, R. A. L., Pasqual, M. (2014). Chemical, physical and physical-chemical characterization of physalis cultivated in greenhouse. Ciência Rural. 44 (8), 1411-1414. doi: 10.1590/0103-8478cr20130743.

Saavedra, J. C. M., Zaragoza, F. A. R., Toledo, D. C., Hernández, C.V.S., Vargas-Ponce, O. (2019). Agromorphological characterization of wild and weedy populations of Physalis angulata in Mexico. Scientia Horticulturae. 246, 86-94. doi: 10.1016/j.scienta.2018.10.055.

Salim, S. (1998). Tratado de fruticultura. Piracicaba: FEALQ, p.760.

Sathiyabama, M., Akila, G. (2021). Water soluble Chitosan extraction from mycelium of Alternaria solani and its field evaluation on Tomato plants. Carbohydrate Polymer Technologies and Applications. 2, 100-101. doi: 10.1016/j.carpta.2021.100101.

Sathiyabama, M., Bernstein, N., Anusuya, S. (2016). Chitosan elicitation for increased curcumin production and stimulation of defense response in turmeric (Curcuma longa L.). Industrial Crops and Products. 89, 87-94. doi: 10.1016/j.indcrop.2016.05.007.

Synowiecki, J., Khateeb, N. A. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition. 43 (2), 145-171. doi: 10.1080/10408690390826473.

Trani, P. E., Kariya, E. A., Hanai, S. M., Anbo, R. H., Basseto Junior, O. B., Purqueiro, L. F. V., Trani, L. (2015). Calagem e adubação do tomate de mesa. IAC – Instituto Agronômico de Campinas, p.35. online. (Série Tecnologia Apta. Boletim Técnico IAC, 215).

Trouvelot, S., Heloir, M. C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., Combier, M., Trda, L., Daire, X., Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. in Plant Sci. 5, 592. doi: 10.3389/fpls.2014.00592.

Valdivia-Mares, L. E., Zaragoza, F. A. R., González, J. J. S., Vargas-Ponce, O. (2016). Phenology, agronomic and nutritional potential of three wild husk frit species (Physalis, Solanaceae) from Mexico. Scientia Horticulturae, 200, 83-94. doi: 10.1016/j.scienta.2016.01.005.

Downloads

Published

24/01/2022

How to Cite

CLAUS, A.; SATO, A. J.; TARTARO, E. L.; ALGERI, A.; OLIVEIRA, T. L. A.; MUHLBEIER, D. T.; CLAUS, A. B.; MISSIO, R. F. Application of chitosan on physalis. Research, Society and Development, [S. l.], v. 11, n. 2, p. e24111225825, 2022. DOI: 10.33448/rsd-v11i2.25825. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/25825. Acesso em: 27 sep. 2022.

Issue

Section

Agrarian and Biological Sciences