Different approaches to the synthesis of ZSM-22 zeolite with application in n-heptane cracking





ZSM-22; Zeolite; Different synthesis approaches; Catalytic cracking.


The synthesis of ZSM-22 zeolite has been extensively studied due to its properties of form selectivity, acidity and hydrothermal stability, which is applied in important reactions in the areas of petroleum refining and petrochemicals. In view of this, the present work studied different approaches of synthesis of ZSM-22 using: 1-diaminohexane as a structure directing agent, (ii) methanol and seed crystals, (iii) aging of the synthesis gel with addition of polymer, surfactant and silane and (iv) starch, calcium carbonate and silanized silica with subsequent desilication. Thus, the effects of these methodologies on the textural properties, acidity and catalytic activity of the zeolites obtained were evaluated. The samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), ammonia desorption at programmed temperature (NH3-TPD) and thermal analysis (TG/DTG). The catalytic activity and selectivity of the catalysts were evaluated in the model catalytic cracking reaction of n-heptane at 650 °C for 180 min. The synthesis route using methanol and seed crystals allowed obtaining ZSM-22 in 3 h of crystallization, drastically reducing the synthesis time compared to other methodologies. Despite this, the use of 1-diaminohexane led to the obtaining of zeolite with textural properties, acidity and catalytic activity superior to the other samples. The generation of mesoporosity was obtained through the use of silanized silica and subsequent desilication, leading to greater catalytic stability and less deactivation by coke. All catalysts showed similar selectivity to the formation of compounds in the range C2 to C4.


Afroukhteh-Langaroudi, N.; Tarighi, S., & Khonakdara, H. A. (2018). Catalytic Cracking of n-Hexane and n-Heptane over ZSM-5 Zeolite: Influence of SiO2/Al2O3 Ratio. Petroleum Chemistry, 58, 457–463.doi:10.1134/S096554411805002X

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373–380.doi:10.1021/ja01145a126

Blay, V.; Louis, B.; Miravalles, R.; Yokoi, T.; Peccatiello, K. A.; Clough, M., & Yilmaz, B. (2017). Engineering zeolites for catalytic cracking to light olefins. ACS Catalysis, 7, 6542–6566.doi:10.1021/acscatal.7b02011

Brunauer, S.; Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309–319.


Camblor, M. A.; Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25, 59–74.


Chen, Z.; Liu, S.; Wang, H.; Ning, Q.; Zhang, H.; Yun, Y.; Ren, J., & Li, Y.-W. (2018). Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance. Journal of Catalysis, 361, 177-185.doi:10.1016/j.jcat.2018.02.019

Corma, A.; Melo, F. V.; Sauvanaud, L., & Ortega, F. (2005). Light cracked naphtha processing: Controlling chemistry for maximum propylene production. Catalysis Today, 107–108, 699–706.doi:10.1016/j.cattod.2005.07.109

Corma, A.; Corresa, E.; Mathieu, Y.; Sauvanaud, L.; Al-Bogami, S.; Alghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: Light olefins from crude oil. Catalysis Science & Technology, 7, 12–46.doi:10.1039/C6CY01886F

Dagle, V. L.; Lopez, J. S.; Cooper, A.; Luecke, J.; Swita, M.; Dagle, R. A., & Gaspar, D. (2020). Production and fuel properties of iso-olefins with controlled molecular structure and obtained from butene oligomerization. Fuel, 277, 118147.doi:10.1016/j.fuel.2020.118147

Del Campo, P.; Beato, P.; Rey, F.; Navarro, M. T.; Olsbye, U.; Lillerud, K. P., & Svelle, S. (2018). Influence of post-synthetic modifications on the composition, acidity and textural properties of ZSM-22 zeolite. Catalysis Today, 299, 120-134.doi:10.1016/j.cattod.2017.04.042

Del Campo, P.; Olsbye, U.; Lillerud, K. P.; Svelle, S., & Beato, P. (2018). Impact of post-synthetic treatments on unidirectional H-ZSM-22 zeolite catalyst: Towards improved clean MTG catalytic process. Catalysis Today, 299, 135–145.doi:10.1016/j.cattod.2017.05.011

Dollimore, D., & Spooner, P. (1974). A Single Point Method for Evaluating the Specific Surface Area of a Solid from Nitrogen Adsorption Isotherms. Journal of Chemical Technology & Biotechnology, 24, 35-41.doi:10.1002/jctb.2720240104

Dyballa, M.; Obenaus, U.; Rosenberger, M.; Fischer, A.; Jakob, H.; Klemm, E., & Hunger, M. (2016). Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion. Microporous and Mesoporous Materials, 233, 26-30.doi:10.1016/j.micromeso.2016.06.044

Gao, S.-B.; Zhao, Z.; Lu, X.-F.; Chi, K.-B.; Duan, A.-J.; Liu, Y.-F.; Meng, X.-B.; Tan, M.-W.; Yu, H.-Y.; Shen, Y.-G., & Li, M.-C. (2020). Hydrocracking diversity in n-dodecane isomerization on Pt/ZSM-22 and Pt/ZSM-23 catalysts and their catalytic performance for hydrodewaxing of lube base oil. Petroleum Science, 17, 1752–1763.doi:10.1007/s12182-020-00500-7

Gollakota, A. R. K.; Volli, V.; Munagapati, V. S.; Wen, J.-C. & Shu, C.-M. (2020). Synthesis of novel ZSM-22 zeolite from Taiwanese coal fly ash for the selective separation of Rhodamine 6G. Journal of Materials Research and Technology, 9, 15381-15393.doi:10.1016/j.jmrt.2020.10.070

Hayasaka, K.; Liang, D.; Huybrechts, W.; De Waele, B. R.; Houthoofd, P. E.; Gaigneaux, E. M. van Tendeloo, G.; Thybaut, J. W.; Marin, G. B.; Denayer, J. F. ; Baron, G. V.; Jacobs, P. A.; Kirschhock, C. E. A., & Martens, J. A. (2007). Formation of ZSM-22 Zeolite Catalytic Particles by Fusion of Elementary Nanorods. Chemistry-A European Journal, 13, 10070–10077.doi:10.1002/chem.200700967.

He, L.. Fu, W.; Li, L.; Huang, Y.; Chen, L.; Wu, D.; Zhang, L., & Tang, T. (2021). Study of CA-treated ZSM-22 zeolite with enhanced catalytic performance in the hydroisomerization of long-chain n-dodecane. New Journal of Chemistry, 45, 2820-2829.


Inagaki, S.; Shinoda, S.; Hayashi, S.; Wakihara, T.; Yamazaki, H.; Kondo, J. N., & Kubota, Y. (2016). Improvement in the catalytic properties of ZSM-5 zeolite nanoparticles via mechanochemical and chemical modifications. Catalysis Science & Technology, 6, 2598–604.doi:10.1039/C5CY01644D.

Jamil, A. K.; Muraza, O.; Sanhoob, M.; Tago, T.; Konno, H.; Nakasaka, Y., & Masuda, T. (2014). Controlling naphtha cracking using nanosized TON zeolite synthesized in the presence of polyoxyethylene surfactant. Journal of Analytical and Applied Pyrolysis, 110, 338-345.doi:10.1016/j.jaap.2014.09.023

Jamil, A. K.; Muraza, O., & Al-Amer, A. M. (2015). The role of alcohols and diols as co-solvents in fabrication of TON zeolite. Journal of Industrial and Engineering Chemistry, 29, 112-119.doi:10.1016/j.jiec.2015.03.023

Jamil, A. K.; Muraza, O., & Al-Amer, A. M. (2016). Microwave-assisted solvothermal synthesis of ZSM-22 zeolite with controllable crystal lengths. Particuology, 24, 138-141.doi:10.1016/j.partic.2015.09.002

Javaid, R.; Urata, K.; Furukawa, S., & Komatsu, T. (2015). Factors affecting coke formation on H-ZSM-5 in naphtha cracking. Applied Catalysis A: General, 491, 100–105.doi:10.1016/j.apcata.2014.12.002.

Li, S.; Li, J.; Dong, M.; Fan, S.; Zhao, T.; Wang, J., & Fan, W. (2019). Strategies to control zeolite particle morphology. Chemical Society Reviews, 48, 885-907.doi:10.1039/C8CS00774H

Lippens, B. C., & De Boer, J. H. (1965). Studies on pore systems in catalysts: V. The t method. Journal of Catalysis, 4(3), 319-323.doi:10.1016/0021-9517(65)90307-6

Liu, S.; Ren, J.; Zhu, S.; Zhang, H.; Lv, E.; Xu, J., & Li, Y.-W. (2015). Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance. Journal of Catalysis, 330, 485–496.doi:10.1016/j.jcat.2015.07.027

Liu, Z.; Chu, Y.; Tang, X.; Huang, L.; Li, G.; Yi, X., & Zheng, A. (2017). Diffusion Dependence of the Dual-Cycle Mechanism for MTO Reaction Inside ZSM-12 and ZSM-22 Zeolites. Journal of Physical Chemistry C, 121, 22872–22882.doi:10.1021/acs.jpcc.7b07374

Li, Y.-S.; Wen, Z.-H.; Wei, Z.-H.; Yang, F., & Zhu, X.-D. (2017). Catalytic study for the alkylation of benzene with methanol over ZSM-22 and ZSM-35. Catalyst Research, 19(4), 38-46. http://www.chinarefining.com/EN/Y2017/V19/I4/38

Li, X.; Tsai, S.-T.; Wu, K. C.-W.; Curnow, O. J.; Choi, J. & Yip, A. C. K. (2021). Morphology control of ionic-liquid-templated ZSM-22 and ZSM-5 zeolites using a two-step process and its effect on toluene methylation. Microporous and Mesoporous Materials, 328, 111475.doi:10.1016/j.micromeso.2021.111475.

Lok, B. M.; Marcus, B. K., & Angell, C. L. (1986). Characterization of zeolite acidity. II. Measurement of zeolite acidity by ammonia temperature programmed desorption and FTi.r. spectroscopy techniques. Zeolites, 6(3), 185-194.doi:10.1016/0144-2449(86)90046-1

Lopes, C. W.; Villarroel-Rocha, J.; Silva, B. A.; Mignoni, M. L., & Pergher, S. B. C. (2016). Synthesis and Characterization of Al-TON Zeolite Using a Dialkylimizadolium as Structure Directing Agent. Materials Research, 19, 1461-1468.doi:10.1590/1980-5373-MR-2016-0041

Luo, Y.; Wang, Z.; Jin, S.; Zhang, B.; Sun, H.; Yuan, X., & Yang, W. (2016). Synthesis and crystal growth mechanism of ZSM-22 zeolite nanosheets. CrystEngComm, 18 (30), 5611-5615.doi:10.1039/C6CE00773B

Morimoto, N.; Takatsu, K., & Sugimoto, M. (1983). Crystalline aluminosilicate and process for the production thereof (EP No 0121730B1)European Patent Office. https://patentimages.storage.googleapis.com/a8/11/ed/27c3bb8b195c42/EP0121730B1.pdf

Přech, J. Pizarro, P.; Serrano, D. P., & Čejka, J. (2018). From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 47, 8263-8306. doi:10.1039/C8CS00370J

Qian, B.; Jiang, H.; Sun, Y., & Long, Y. (2001). Affinity Study of Organics on Siliceous Ferrierite Type Zeolite. Langmuir, 17, 1119-1125.doi:10.1021/la000835n

Quintela, P. H. L.; Lima, W. S.; Silva, B. J. B.; Silva, A. O. S., & Rodrigues, M. G. F. (2021). Effect of the simultaneous presence of sodium and potassium cations on the hydrothermal synthesis of MCM-22 zeolite, Research, Society and Development, 10(14), e192101421744.doi:10.33448/rsd-v10i14.21744

Rahimi, N., & Karimzadeh, R. (2011). Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Applied Catalysis A: General, 398, 1–17.doi:10.1016/j.apcata.2011.03.009

Redekop, E. A.; Lazzarinia, A.; Bordigaa, S., & Olsbye, U. (2020). A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM-22 zeolite. Journal of Catalysis, 385, 300-312.doi:10.1016/j.jcat.2020.03.020

Rollmann, L. D.; Schlenker, J. L.; Lawton, S. L.; Kennedy, C. L.; Kennedy, G. J., & Doren, D. J. (1999). On the Role of Small Amines in Zeolite Synthesis. The Journal of Physical Chemistry B, 103, 7175–7183.doi:10.1021/jp991913m

Rownaghi, A. A.; Rezaei, F., & Hedlund, J. (2012). Selective formation of light olefin by n-hexane cracking over HZSM-5: influence of crystal size and acid sites of nano-and micrometer-sized crystals. Chemical Engineering Journal, 191, 528–533.doi:10.1016/j.cej.2012.03.023

Shin, J.; Jo, D., & Hong, S. B. (2019). Rediscovery of the Importance of Inorganic Synthesis Parameters in the Search for New Zeolites. Accounts of Chemical Research, 52(5), 1419–1427.doi:10.1021/acs.accounts.9b00073

Silva, B. J. B.; Sousa, L. V.; Quintela, P. H. L.; Alencar Júnior, N. R.; Alencar, S. L.; Maciel, P. A. M.; Santos, J. R.; Sarmento, L. R. A.; Meneghetti, S. M. P., & Silva, A. O. S. (2018). Preparation of ZSM-22 zeolite with hierarchical pore structure. Materials Letters, 218, 119-122.doi:10.1016/j.matlet.2018.01.146

Silva, B. J. B.; Sousa, L. V.; Sarmento, L. R. A.; Carvalho, R. P.; Quintela, P. H. L.; Pacheco, J. G. A.; Fréty, R., & Silva, A. O. S. (2019). Effect of desilication on the textural properties, acidity and catalytic activity of zeolite ZSM-23 synthesized with different structure-directing agents. Microporous and Mesoporous Materials, 290, 109647.doi:10.1016/j.micromeso.2019.109647

Silva, B. J. B.; Melo, A. C. S.; Silva, D. S.; Sousa, L. V.; Quintela, P. H. L.; Alencar, S. L., & Silva, A. O. S. (2020). Thermo-catalytic degradation of PE and UHMWPE over zeolites with different pore systems and textural properties. Cerâmica, 66, 379-385.doi:10.1590/0366-69132020663802948

Silva, B. J. B.; Sousa, L. V.; Sarmento, L. R. A.; Melo, A. C. S.; Silva, D. S.; Quintela, P. H. L.; Alencar, S. L., & Silva, A. O. S. (2022). Effect of coke deposition over microporous and hierarchical ZSM-23 zeolite. Journal of Thermal Analysis and Calorimetry, 147, 3161–3170doi:10.1007/s10973-021-10740-3

Sousa, L. V.; Silva, A. O. S.; Silva, B. J. B.; Teixeira, C. M. ; Arcanjo, A. P. ; Frety, R., & Pacheco, J. G. A. (2017). Fast synthesis of ZSM-22 zeolite by the seed-assisted method of crystallization with methanol. Microporous and Mesoporous Materials, 254, 192-200.doi:10.1016/j.micromeso.2017.04.003

Thaker, A. H.; John, M.; Kumar, K.; Kasture, M. W.; Parmar, S.; Newalkar, B. L., & Parikh, P. A. (2016). Hydroisomerization of Biomass Derived n-Hexadecane Towards Diesel Pool: Effect of Selective Removal External Surface Sites from Pt/ZSM-22. International Journal of Chemical Reactor Engineering, 14, 155-165. doi:10.1515/ijcre-2015-0049.

Treacy, M. M. J., & Higgins, J. B. (2007). Collection of Simulated XRD Powder Patterns for Zeolites, Amsterdam: Elsevier.

Valyocsik, E. W. (1984). Synthesis of zeolite ZSM-22 (US Pat. No 4,902,406)U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/b5/79/a5/6c83073872b042/US4902406.pdf

Verboekend, D.; Chabaneix, A. M.; Thomas, K.; Gilson, J. -P., & Pérez-Ramirez, J. (2011). Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution. CrystEngComm, 13, 3408-3416.doi:10.1039/C0CE00966K

Verduijn, J. P., & Martens, L. R. M. (1996). ZSM-22 zeolite (US Pat. No 5,783,168)U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/a9/e3/ff/dfe25bc56bc62b/US5783168.pdf

Wang, Y.; Yokoi, T.; Namba, S.; Kondo, J. N., & Tatsumi, T. (2015). Catalytic cracking of n-hexane for producing propylene on MCM-22 zeolites. Applied Catalysis A: General, 504, 192-202.doi:10.1016/j.apcata.2014.12.018.

Wang, X.; Zhang, X., & Wang, Q. (2019). Fabrication of hierarchical ZSM-22 hollow sphere. Materials Letters, 244, 96-99.doi:10.1016/j.matlet.2019.01.153

Wen, H.; Zhou, Y.; Xie, J.; Long, Z.; Zhang, W. & Wang, J. (2014). Pure-silica ZSM-22 zeolite rapidly synthesized by novel ionic liquid-directed dry-gel conversion. RSC Advances, 4, 49647-49654.doi:1039/C4RA07627C

Xu, S.; Zhang, X.; Cheng, D.-G.; Chen, F., & Ren, X. (2018). Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 12, 780–789.doi:10.1007/s11705-018-1733-8

Yu, J. (2007). Synthesis of zeolite. In: T. Cejka, H. Van Bekkum, A. Corma, F. Schuth (Eds.), Introduction to zeolite science and pratice (Studies in Surface Science and Catalysis, 168, p. 39-103). Amsterdam: Elsevier.doi:10.1016/S0167-2991(07)80791-9

Zhang, M.; Liu, X., & Yan, Z. (2016). Soluble starch as in-situ template to synthesize ZSM-5 zeolite with intracrystal mesopores. Materials Letters, 164, 543-546.doi:10.1016/j.matlet.2015.10.044

Zhang, X.; Cheng, D. G.; Chen, F., & Zhan, X. (2018). The Role of External Acidity of Hierarchical ZSM-5 Zeolites in n-Heptane Catalytic Cracking. ChemCatChem,10(12), 2655-2663.doi:10.1002/cctc.201800086

Zhu, H.; Liu, Z.; Wang, Y. ; Kong, D.; Yuan, X., & Xie, Z. (2008). Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chemistry of Materials, 20, 1134–1139.doi:10.1021/cm071385o




How to Cite

SOUSA JÚNIOR, L. V. de; RIBEIRO, T. R. S.; SILVA, B. J. B. da; QUINTELA, P. H. L.; ALENCAR, S. L.; PACHECO FILHO, J. G. de A.; SILVA, A. O. S. da . Different approaches to the synthesis of ZSM-22 zeolite with application in n-heptane cracking. Research, Society and Development, [S. l.], v. 11, n. 3, p. e6411326070, 2022. DOI: 10.33448/rsd-v11i3.26070. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26070. Acesso em: 16 jul. 2024.