Evaluation of the influence of calcium chloride on the behavior of phases of nanosystems applied in the larvicidal control of Aedes aegypti
DOI:
https://doi.org/10.33448/rsd-v11i3.26115Keywords:
Surfactants; Stabilized systems; Larvicidal control; Aedes aegypti; Artemia salina.Abstract
Systems stabilized by surfactants in order to incorporate different substances at their interfaces, such as hydrophilic polymers and active compounds, are systems capable of establishing vector control of Aedes aegypti. The system was obtained through the surface tension of PPG-5-CETETH-20/calcium chloride dispersion at concentrations of 0.2%, 0.4%, 0.8%, 1% and 2%, determining the CMC of each sample. Then, a binary study was performed and the system structures were evaluated by Polarized Light Microscopy (PLM) and rheological analysis. Biological analysis was performed to assess the mean lethal concentration (LC50) against Aedes aegypti larvae and toxicity to non-target organisms in Artemia salina. In this sense, the objective of this work was to evaluate the influence of calcium chloride on the behavior of phases and on the biological activity of formulations based on the self-aggregation of surfactants, an alternative larval insecticide to be used as a replacement for larval insecticides already on the market.
References
Abramowitz, M., & Davidson, M. W. (2012). Immersion media. Olympus Microscopy Resource Center.
Alvarez Costa, A., Gonzalez, P. V., Harburguer, L. V., & Masuh, H. M. (2018). Effects of temephos, permethrin, and Eucalyptus nitens essential oil on survival and swimming behavior of Aedes aegypti and Anopheles pseudopunctipennis (Diptera: Culicidae) larvae. Journal of medical entomology, 55(5), 1098-1104.
Bussmann, R. W., Malca, G., Glenn, A., Sharon, D., Nilsen, B., Parris, B., ... & Townesmith, A. (2011). Toxicity of medicinal plants used in traditional medicine in Northern Peru. Journal of ethnopharmacology, 137(1), 121-140.
Carvalho, F. C., Campos, M. L., Peccinini, R. G., & Gremião, M. P. D. (2013). Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 219-227.
Corte, R. L., Melo, V. A. D., Dolabella, S. S., & Marteis, L. S. (2018). Variation in temephos resistance in field populations of Aedes aegypti (Diptera: Culicidae) in the State of Sergipe, Northeast Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 51, 284-290.
Damasceno, B. P. G. L., Silva, J. A., Oliveira, E. E., Silveira, W., Araújo, I. B., Oliveira, A. G. D., & Egito, E. (2011). Microemulsão: um promissor carreador para moléculas insolúveis. Revista de Ciências Farmacêuticas Básica e Aplicada, 9-18.
Aguiar, I., dos Santos, E. R., Mafud, A. C., Annies, V., Navarro-Silva, M. A., dos Santos Malta, V. R., ... & Carlos, R. M. (2017). Synthesis and characterization of Mn (I) complexes and their larvicidal activity against Aedes aegypti, vector of dengue fever. Inorganic Chemistry Communications, 84, 49-55.
Castro Santana, R., Fasolin, L. H., & da Cunha, R. L. (2012). Effects of a cosurfactant on the shear-dependent structures of systems composed of biocompatible ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398, 54-63.
Santana, J. F. C. L., Ronn, A. P., Bezerra, G. N., & da Silva Fernandes, T. L. (2021). Agravos clínicos decorrentes das arboviroses: uma revisão de literatura. Research, Society and Development, 10(2), e46010212057-e46010212057.
Souza, M. A., da Silva, L., Dos Santos, M. A., Macêdo, M. J., Lacerda-Neto, L. J., Coutinho, H. D., ... & Cunha, F. A. (2020). Larvicidal Activity of Essential Oils Against Aedes aegypti (Diptera: Culicidae). Current Pharmaceutical Design, 26(33), 4092-4111.
Ferreira, S. G., Conceição, V. S., Gouveia, N. S., Santos, G. S., Santos, R. L. C., Lira, A. A. M., ... & Nunes, R. S. (2015). An environmentally safe larvicide against Aedes aegypti based on in situ gelling nanostructured surfactant systems containing an essential oil. Journal of colloid and interface science, 456, 190-196.
Finney, D. J. (1952). Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge university press, Cambridge.
Fonseca, E. O. L., Macoris, M. D. L. D. G., Santos, R. F. D., Morato, D. G., Isabel, M. D. S. S., Cerqueira, N. A., & Monte-Alegre, A. F. (2019). Experimental study on the action of larvicides in Aedes aegypti populations collected in the Brazilian municipality of Itabuna, Bahia, under simulated field conditions. Epidemiologia e Serviços de Saúde, 28.
Froelich, A., Osmałek, T., Snela, A., Kunstman, P., Jadach, B., Olejniczak, M., ... & Białas, W. (2017). Novel microemulsion-based gels for topical delivery of indomethacin: Formulation, physicochemical properties and in vitro drug release studies. Journal of colloid and interface science, 507, 323-336.
Fujiwara, G. M., Annies, V., de Oliveira, C. F., Lara, R. A., Gabriel, M. M., Betim, F. C., ... & Zanin, S. M. (2017). Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicology and environmental safety, 139, 238-244.
Galindo-Alvarez, J., Le, K. A., Sadtler, V., Marchal, P., Perrin, P., Tribet, C., ... & Durand, A. (2011). Enhanced stability of nanoemulsions using mixtures of non-ionic surfactant and amphiphilic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1-3), 237-245.
Grządka, E., & Matusiak, J. (2017). The effect of ionic and non-ionic surfactants and pH on the stability, adsorption and electrokinetic properties of the alginic acid/alumina system. Carbohydrate polymers, 175, 192-198.
Ho, H. O., Hsiao, C. C., & Sheu, M. T. (1996). Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs. Journal of pharmaceutical sciences, 85(2), 138-143.
Huang, J., Li, J., Feng, Y., Li, K., Yan, H., Gao, P., ... & Wang, C. (2015). Aggregation behavior of derivatives of sodium alginate and N-octyl-β-d-glucopyranoside in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 479, 11-17.
Hyde, S. T. (2001). Identification of lyotropic liquid crystalline mesophases. Handbook of applied surface and colloid chemistry, 2, 299-332.
Ling, Wei, L., Wang, Z., Liu, X., Guo, F., & Fan, J. (2014). Rheological properties of lamellar liquid crystals formed in Brij97/castor oil/water systems in the presence of soybean lecithin.
Maia, J. D., La Corte, R., Martinez, J., Ubbink, J., & Prata, A. S. (2019). Improved activity of thyme essential oil (Thymus vulgaris) against Aedes aegypti larvae using a biodegradable controlled release system. Industrial crops and products, 136, 110-120.
Martins, T. G. T., Rosa, P. V. S., Arruda, M. O., Dias, A. A. S., de Araújo Neto, A. P., Carvalho, A. M. A. S., ... & Everton, G. O. (2021). Larvicidal activity of microparticles of Melissa officinalis L. essential oil (Lamiaceae) against Aedes aegypti (Diptera, Culicidae). Research, Society and Development, 10(1), e35710111166-e35710111166.
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. J., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45(05), 31-34.
Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H., & Halm-Lemeille, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23(6), 4992-5001.
Nunes, R. K., Martins, U. N., Brito, T. B., Nepel, A., Costa, E. V., Barison, A., ... & Cavalcanti, S. C. (2018). Evaluation of (–)-borneol derivatives against the Zika vector, Aedes aegypti and a non-target species, Artemia sp. Environmental Science and Pollution Research, 25(31), 31165-31174.
Nunes, R. K., Martins, U. N., Brito, T. B., Nepel, A., Costa, E. V., Barison, A., ... & Cavalcanti, S. C. (2018). Evaluation of (–)-borneol derivatives against the Zika vector, Aedes aegypti and a non-target species, Artemia sp. Environmental Science and Pollution Research, 25(31), 31165-31174.
Polizelli, M. A., Telis, V. R. N., Amaral, L. Q., & Feitosa, E. (2006). Formation and characterization of soy bean oil/surfactant/water microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281(1-3), 230-236.
Riccardi, E., & Tichelkamp, T. (2019). Calcium ion effects on the water/oil interface in the presence of anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 573, 246-254.
Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons.
Salvia-Trujillo, L., Soliva-Fortuny, R., Rojas-Graü, M. A., McClements, D. J., & Martín-Belloso, O. (2017). Edible nanoemulsions as carriers of active ingredients: A review. Annual review of food science and technology, 8, 439-466.
Santos, A. J., Pina, L. T., Galvão, J. G., Trindade, G. G., Nunes, R. K., Santos, J. S., ... & Nunes, R. S. (2020). Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. Applied Clay Science, 185, 105394.
Santos, V. S. V., & Pereira, B. B. (2020). Low toxicity and high efficacy in use of novel approaches to control Aedes aegypti. Journal of Toxicology and Environmental Health, Part B, 23(6), 243-254.
Sousa, J. R., Silva, F. A., Targanski, S. K., Fazolo, B. R., Souza, J. M., Campos, M. G., ... & Soares, M. A. (2019). Synthesis and larvicidal activity of indole derivatives against Aedes aegypti (Diptera: Culicidae). Journal of Applied Entomology, 143(10), 1172-1181.
Vogel, T. J. (2011). Dynamic Behavior of Self-Assembled Langmuir Films Composed of Soluble Surfactants and Insoluble Amphiphiles (Doctoral dissertation, The Ohio State University).
World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization (2009). Department of Control of Neglected Tropical Diseases, World Health Organization. Epidemic, & Pandemic Alert. Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization.
Yariv, D., Efrat, R., Libster, D., Aserin, A., & Garti, N. (2010). In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloids and Surfaces B: Biointerfaces, 78(2), 185-192.
Zara, A. L. D. S. A., Santos, S. M. D., Fernandes-Oliveira, E. S., Carvalho, R. G., & Coelho, G. E. (2016). Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde, 25, 391-404.
Zhang, H., & Wang, Z. (2019). Phase transition and release kinetics of polyphenols encapsulated lyotropic liquid crystals. International journal of pharmaceutics, 565, 283-293.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Adriana de Jesus Santos; Nathália Araújo Macêdo; Marcos Rafael das Chagas Mendonça; Sócrates Cabral de Holanda Cavalcanti; Victor Hugo Vitorino Sarmento ; Ana Amélia Moreira Lira; Guilherme Rodolfo Souza de Araujo ; Cochiran Pereira dos Santos; Roberto Rodrigues de Souza; Rogéria de Souza Nunes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.