Evaluación de la influencia del cloruro de calcio en el comportamiento de fases de nanosistemas aplicados en el control larvicida de Aedes Aegypti
DOI:
https://doi.org/10.33448/rsd-v11i3.26115Palabras clave:
Tensioactivos; Sistemas estabilizados; Control de larvicidas; Aedes aegypti; Artemia salina.Resumen
Los sistemas estabilizados con surfactantes pueden incorporar diferentes sustancias en sus interfaces, como polímeros hidrofílicos y compuestos activos, y son sistemas capaces de establecer el control de vectores de Aedes aegypti. El sistema se obtuvo mediante la tensión superficial de la dispersión de PPG-5-CETETH-20/cloruro de calcio en concentraciones de 0,2%, 0,4%, 0,8%, 1% y 2%, determinando la CMC de cada muestra. Luego, se realizó un estudio binario y se evaluaron las estructuras del sistema mediante Microscopía de Luz Polarizada (MLP) y análisis reológico. Se realizó un análisis biológico para evaluar la concentración letal media (LC50) contra larvas de Aedes aegypti y la toxicidad para organismos no objetivo en Artemia salina. En este sentido, el objetivo de este trabajo fue evaluar la influencia del cloruro de calcio en el comportamiento de las fases y en la actividad biológica de formulaciones basadas en la autoagregación de tensioactivos, una alternativa insecticida larval para ser utilizada como sustituto de insecticidas que ya están en el mercado.
Citas
Abramowitz, M., & Davidson, M. W. (2012). Immersion media. Olympus Microscopy Resource Center.
Alvarez Costa, A., Gonzalez, P. V., Harburguer, L. V., & Masuh, H. M. (2018). Effects of temephos, permethrin, and Eucalyptus nitens essential oil on survival and swimming behavior of Aedes aegypti and Anopheles pseudopunctipennis (Diptera: Culicidae) larvae. Journal of medical entomology, 55(5), 1098-1104.
Bussmann, R. W., Malca, G., Glenn, A., Sharon, D., Nilsen, B., Parris, B., ... & Townesmith, A. (2011). Toxicity of medicinal plants used in traditional medicine in Northern Peru. Journal of ethnopharmacology, 137(1), 121-140.
Carvalho, F. C., Campos, M. L., Peccinini, R. G., & Gremião, M. P. D. (2013). Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. European Journal of Pharmaceutics and Biopharmaceutics, 84(1), 219-227.
Corte, R. L., Melo, V. A. D., Dolabella, S. S., & Marteis, L. S. (2018). Variation in temephos resistance in field populations of Aedes aegypti (Diptera: Culicidae) in the State of Sergipe, Northeast Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 51, 284-290.
Damasceno, B. P. G. L., Silva, J. A., Oliveira, E. E., Silveira, W., Araújo, I. B., Oliveira, A. G. D., & Egito, E. (2011). Microemulsão: um promissor carreador para moléculas insolúveis. Revista de Ciências Farmacêuticas Básica e Aplicada, 9-18.
Aguiar, I., dos Santos, E. R., Mafud, A. C., Annies, V., Navarro-Silva, M. A., dos Santos Malta, V. R., ... & Carlos, R. M. (2017). Synthesis and characterization of Mn (I) complexes and their larvicidal activity against Aedes aegypti, vector of dengue fever. Inorganic Chemistry Communications, 84, 49-55.
Castro Santana, R., Fasolin, L. H., & da Cunha, R. L. (2012). Effects of a cosurfactant on the shear-dependent structures of systems composed of biocompatible ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398, 54-63.
Santana, J. F. C. L., Ronn, A. P., Bezerra, G. N., & da Silva Fernandes, T. L. (2021). Agravos clínicos decorrentes das arboviroses: uma revisão de literatura. Research, Society and Development, 10(2), e46010212057-e46010212057.
Souza, M. A., da Silva, L., Dos Santos, M. A., Macêdo, M. J., Lacerda-Neto, L. J., Coutinho, H. D., ... & Cunha, F. A. (2020). Larvicidal Activity of Essential Oils Against Aedes aegypti (Diptera: Culicidae). Current Pharmaceutical Design, 26(33), 4092-4111.
Ferreira, S. G., Conceição, V. S., Gouveia, N. S., Santos, G. S., Santos, R. L. C., Lira, A. A. M., ... & Nunes, R. S. (2015). An environmentally safe larvicide against Aedes aegypti based on in situ gelling nanostructured surfactant systems containing an essential oil. Journal of colloid and interface science, 456, 190-196.
Finney, D. J. (1952). Probit analysis: a statistical treatment of the sigmoid response curve. Cambridge university press, Cambridge.
Fonseca, E. O. L., Macoris, M. D. L. D. G., Santos, R. F. D., Morato, D. G., Isabel, M. D. S. S., Cerqueira, N. A., & Monte-Alegre, A. F. (2019). Experimental study on the action of larvicides in Aedes aegypti populations collected in the Brazilian municipality of Itabuna, Bahia, under simulated field conditions. Epidemiologia e Serviços de Saúde, 28.
Froelich, A., Osmałek, T., Snela, A., Kunstman, P., Jadach, B., Olejniczak, M., ... & Białas, W. (2017). Novel microemulsion-based gels for topical delivery of indomethacin: Formulation, physicochemical properties and in vitro drug release studies. Journal of colloid and interface science, 507, 323-336.
Fujiwara, G. M., Annies, V., de Oliveira, C. F., Lara, R. A., Gabriel, M. M., Betim, F. C., ... & Zanin, S. M. (2017). Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicology and environmental safety, 139, 238-244.
Galindo-Alvarez, J., Le, K. A., Sadtler, V., Marchal, P., Perrin, P., Tribet, C., ... & Durand, A. (2011). Enhanced stability of nanoemulsions using mixtures of non-ionic surfactant and amphiphilic polyelectrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1-3), 237-245.
Grządka, E., & Matusiak, J. (2017). The effect of ionic and non-ionic surfactants and pH on the stability, adsorption and electrokinetic properties of the alginic acid/alumina system. Carbohydrate polymers, 175, 192-198.
Ho, H. O., Hsiao, C. C., & Sheu, M. T. (1996). Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs. Journal of pharmaceutical sciences, 85(2), 138-143.
Huang, J., Li, J., Feng, Y., Li, K., Yan, H., Gao, P., ... & Wang, C. (2015). Aggregation behavior of derivatives of sodium alginate and N-octyl-β-d-glucopyranoside in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 479, 11-17.
Hyde, S. T. (2001). Identification of lyotropic liquid crystalline mesophases. Handbook of applied surface and colloid chemistry, 2, 299-332.
Ling, Wei, L., Wang, Z., Liu, X., Guo, F., & Fan, J. (2014). Rheological properties of lamellar liquid crystals formed in Brij97/castor oil/water systems in the presence of soybean lecithin.
Maia, J. D., La Corte, R., Martinez, J., Ubbink, J., & Prata, A. S. (2019). Improved activity of thyme essential oil (Thymus vulgaris) against Aedes aegypti larvae using a biodegradable controlled release system. Industrial crops and products, 136, 110-120.
Martins, T. G. T., Rosa, P. V. S., Arruda, M. O., Dias, A. A. S., de Araújo Neto, A. P., Carvalho, A. M. A. S., ... & Everton, G. O. (2021). Larvicidal activity of microparticles of Melissa officinalis L. essential oil (Lamiaceae) against Aedes aegypti (Diptera, Culicidae). Research, Society and Development, 10(1), e35710111166-e35710111166.
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. J., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45(05), 31-34.
Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H., & Halm-Lemeille, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23(6), 4992-5001.
Nunes, R. K., Martins, U. N., Brito, T. B., Nepel, A., Costa, E. V., Barison, A., ... & Cavalcanti, S. C. (2018). Evaluation of (–)-borneol derivatives against the Zika vector, Aedes aegypti and a non-target species, Artemia sp. Environmental Science and Pollution Research, 25(31), 31165-31174.
Nunes, R. K., Martins, U. N., Brito, T. B., Nepel, A., Costa, E. V., Barison, A., ... & Cavalcanti, S. C. (2018). Evaluation of (–)-borneol derivatives against the Zika vector, Aedes aegypti and a non-target species, Artemia sp. Environmental Science and Pollution Research, 25(31), 31165-31174.
Polizelli, M. A., Telis, V. R. N., Amaral, L. Q., & Feitosa, E. (2006). Formation and characterization of soy bean oil/surfactant/water microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281(1-3), 230-236.
Riccardi, E., & Tichelkamp, T. (2019). Calcium ion effects on the water/oil interface in the presence of anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 573, 246-254.
Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons.
Salvia-Trujillo, L., Soliva-Fortuny, R., Rojas-Graü, M. A., McClements, D. J., & Martín-Belloso, O. (2017). Edible nanoemulsions as carriers of active ingredients: A review. Annual review of food science and technology, 8, 439-466.
Santos, A. J., Pina, L. T., Galvão, J. G., Trindade, G. G., Nunes, R. K., Santos, J. S., ... & Nunes, R. S. (2020). Clay/PVP nanocomposites enriched with Syzygium aromaticum essential oil as a safe formulation against Aedes aegypti larvae. Applied Clay Science, 185, 105394.
Santos, V. S. V., & Pereira, B. B. (2020). Low toxicity and high efficacy in use of novel approaches to control Aedes aegypti. Journal of Toxicology and Environmental Health, Part B, 23(6), 243-254.
Sousa, J. R., Silva, F. A., Targanski, S. K., Fazolo, B. R., Souza, J. M., Campos, M. G., ... & Soares, M. A. (2019). Synthesis and larvicidal activity of indole derivatives against Aedes aegypti (Diptera: Culicidae). Journal of Applied Entomology, 143(10), 1172-1181.
Vogel, T. J. (2011). Dynamic Behavior of Self-Assembled Langmuir Films Composed of Soluble Surfactants and Insoluble Amphiphiles (Doctoral dissertation, The Ohio State University).
World Health Organization, Special Programme for Research, Training in Tropical Diseases, World Health Organization (2009). Department of Control of Neglected Tropical Diseases, World Health Organization. Epidemic, & Pandemic Alert. Dengue: guidelines for diagnosis, treatment, prevention and control. World Health Organization.
Yariv, D., Efrat, R., Libster, D., Aserin, A., & Garti, N. (2010). In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloids and Surfaces B: Biointerfaces, 78(2), 185-192.
Zara, A. L. D. S. A., Santos, S. M. D., Fernandes-Oliveira, E. S., Carvalho, R. G., & Coelho, G. E. (2016). Estratégias de controle do Aedes aegypti: uma revisão. Epidemiologia e Serviços de Saúde, 25, 391-404.
Zhang, H., & Wang, Z. (2019). Phase transition and release kinetics of polyphenols encapsulated lyotropic liquid crystals. International journal of pharmaceutics, 565, 283-293.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Adriana de Jesus Santos; Nathália Araújo Macêdo; Marcos Rafael das Chagas Mendonça; Sócrates Cabral de Holanda Cavalcanti; Victor Hugo Vitorino Sarmento ; Ana Amélia Moreira Lira; Guilherme Rodolfo Souza de Araujo ; Cochiran Pereira dos Santos; Roberto Rodrigues de Souza; Rogéria de Souza Nunes
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.