Use of CRISPR-Cas in conjugative plasmids to control the spread of antibiotic resistance in Enterococcus: a literature review.

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26179

Keywords:

CRISPR-Cas system; Conjugative plasmid; Antimicrobial resistance; Enterococcus.

Abstract

Justification: There is a solid worldwide call to control the use of antimicrobials associated with new therapeutic approaches against multidrug-resistant infections, such as those caused by the species E. faecalis and E. faecium, commensal opportunistic pathogens usually present in healthcare-related infections (HAI). The high adaptability of these pathogens to the nosocomial environment and the acquisition of resistance and virulence genes are among the main factors contributing to the worsening of these infections. CRISPR-Cas acts as a bacterial defense system, evolutionarily selected due to the association of bacteria with viruses, present in some strains of E. faecalis and E. faecium. It is speculated that CRISPR-Cas could be used in different vectors, including conjugative plasmids, for editing and inactivating resistance genes. Goals: To investigate the use of CRISPR-Cas in conjugative plasmids to control the spread of multidrug-resistant enterococcal strains. Methodology: This is a scope-based review, applying selection criteria and inclusion of studies in the time interval between 2016 and 2021. Conclusion: Molecular editing tools, such as CRISPR-Cas, may be promising alternatives in controlling multidrug-resistant infections and contribute to the control of hospital spread. Strains that do not have this system are more susceptible to acquiring mobile genetic elements, acquiring resistance and virulence genes. The applicability of CRISPR-Cas in conjugative plasmids is an innovative and feasible method, capable of interfering in the mobile genetic elements acquisition, and consequently, reducing resistance and virulence expression, both in the Enterococcus genus and in others.

References

Ahmed, W.; Hafeez, M. A.; Ahmad, R.; Mahmood, S. CRISPR-Cas system in regulation of immunity and virulence of bacterial pathogens. Gene Reports, [S.L.], v. 13, p. 151-157, dez. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.genrep.2018.10.004

Alemayehu, T., & Hailemariam, M. (2020). Prevalence of vancomycin-resistant enterococcus in Africa in one health approach: a systematic review and meta-analysis. Scientific reports, 10(1), 20542. https://doi.org/10.1038/s41598-020-77696-6

Bender, E. A., de Freitas, A. L., Reiter, K. C., Lutz, L., & Barth, A. L. (2009). Identification, antimicrobial resistance and genotypic characterization of Enterococcus spp. isolated in Porto Alegre, Brazil. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], 40(3), 693–700. https://doi.org/10.1590/S1517-838220090003000035

CDC. (2019). Antibiotic resistance threats in the United States, 2019. antibiotic resistance threats in the united states. https://doi.org/10.15620/cdc:82532

Chen, S., Liu, H., Liang, W., Hong, L., Zhang, B., Huang, L., Guo, X., & Duan, G. (2019). Insertion sequences in the CRISPR-Cas system regulate horizontal antimicrobial resistance gene transfer in Shigella strains. International journal of antimicrobial agents, 53(2), 109–115. https://doi.org/10.1016/j.ijantimicag.2018.09.020

Fuente-Nunez, C., Torres, M. D., Mojica, F. J., & Lu, T. K. (2017). Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Current opinion in microbiology, 37, 95–102. https://doi.org/10.1016/j.mib.2017.05.014

Maat, V., Stege, P. B., Dedden, M., Hamer, M., van Pijkeren, J. P., Willems, R., & van Schaik, W. (2019). CRISPR-Cas9-mediated genome editing in vancomycin-resistant Enterococcus faecium. FEMS microbiology letters, 366(22), fnz256. https://doi.org/10.1093/femsle/fnz256

Dong, H., Xiang, H., Mu, D., Wang, D., & Wang, T. (2019). Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli. International journal of antimicrobial agents, 53(1), 1–8. https://doi.org/10.1016/j.ijantimicag.2018.09.017

Dos Santos, B. A., de Oliveira, J., Parmanhani-da-Silva, B. M., Ribeiro, R. L., Teixeira, L. M., & Neves, F. (2020). CRISPR elements and their association with antimicrobial resistance and virulence genes among vancomycin-resistant and vancomycin-susceptible enterococci recovered from human and food sources. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases, 80, 104183. https://doi.org/10.1016/j.meegid.2020.104183

Fage, C., Lemire, N., & Moineau, S. (2021). Delivery of CRISPR-Cas systems using phage-based vectors. Current opinion in biotechnology, 68, 174–180. https://doi.org/10.1016/j.copbio.2020.11.012

Fagen, J. R.; Collias, D.; Singh, A. K.; Beisel, C. L. Advancing the design and delivery of CRISPR antimicrobials. Current Opinion In Biomedical Engineering, [S.L.], v. 4, p. 57-64, dez. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.cobme.2017.10.001.

Gholizadeh, P., Köse, Ş., Dao, S., Ganbarov, K., Tanomand, A., Dal, T., Aghazadeh, M., Ghotaslou, R., Ahangarzadeh Rezaee, M., Yousefi, B., & Samadi Kafil, H. (2020). How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance. Infection and drug resistance, 13, 1111–1121. https://doi.org/10.2147/IDR.S247271

Gilmore, M. S., Clewell, D. B., Ike, Y., & Shankar, N. (Eds.). (2014). Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary.

Graham, C. E., Cruz, M. R., Garsin, D. A., & Lorenz, M. C. (2017). Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 114(17), 4507–4512. https://doi.org/10.1073/pnas.1620432114

Gupta, D., Bhattacharjee, O., Mandal, D., Sen, M. K., Dey, D., Dasgupta, A., Kazi, T. A., Gupta, R., Sinharoy, S., Acharya, K., Chattopadhyay, D., Ravichandiran, V., Roy, S., & Ghosh, D. (2019). CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life sciences, 232, 116636. https://doi.org/10.1016/j.lfs.2019.116636

Hassan, A. Y., Lin, J. T., Ricker, N., & Anany, H. (2021). The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications?. Pharmaceuticals (Basel, Switzerland), 14(3), 199. https://doi.org/10.3390/ph14030199

Hirt, H., Greenwood-Quaintance, K. E., Karau, M. J., Till, L. M., Kashyap, P. C., Patel, R., & Dunny, G. M. (2018). Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo. mBio, 9(1), e00037-18. https://doi.org/10.1128/mBio.00037-18

Hullahalli, K., Rodrigues, M., Nguyen, U. T., & Palmer, K. (2018). An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. mBio, 9(3), e00414-18. https://doi.org/10.1128/mBio.00414-18

Huo, W., Adams, H. M., Zhang, M. Q., & Palmer, K. L. (2015). Genome Modification in Enterococcus faecalis OG1RF Assessed by Bisulfite Sequencing and Single-Molecule Real-Time Sequencing. Journal of bacteriology, 197(11), 1939–1951. https://doi.org/10.1128/JB.00130-15

Jabbari Shiadeh, S. M., Pormohammad, A., Hashemi, A., & Lak, P. (2019). Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infection and drug resistance, 12, 2713–2725. https://doi.org/10.2147/IDR.S206084

Jannati, E., Amirmozaffari, N., Saadatmand, S., & Arzanlou, M. (2020). Faecal carriage of high-level aminoglycoside-resistant and ampicillin-resistant Enterococcus species in healthy Iranian children. Journal of global antimicrobial resistance, 20, 135–144. https://doi.org/10.1016/j.jgar.2019.06.022

Kiga, K., Tan, X. E., Ibarra-Chávez, R., Watanabe, S., Aiba, Y., Sato'o, Y., Li, F. Y., Sasahara, T., Cui, B., Kawauchi, M., Boonsiri, T., Thitiananpakorn, K., Taki, Y., Azam, A. H., Suzuki, M., Penadés, J. R., & Cui, L. (2020). Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature communications, 11(1), 2934. https://doi.org/10.1038/s41467-020-16731-6

Kilbas, I., & Ciftci, I. H. (2018). Antimicrobial resistance of Enterococcus isolates in Turkey: A meta-analysis of current studies. Journal of global antimicrobial resistance, 12, 26–30. https://doi.org/10.1016/j.jgar.2017.08.012

Mackow, N. A., Shen, J., Adnan, M., Khan, A. S., Fries, B. C., & Diago-Navarro, E. (2019). CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PloS one, 14(11), e0225131. https://doi.org/10.1371/journal.pone.0225131

Melese, A., Genet, C., & Andualem, T. (2020). Prevalence of Vancomycin resistant enterococci (VRE) in Ethiopia: a systematic review and meta-analysis. BMC infectious diseases, 20(1), 124. https://doi.org/10.1186/s12879-020-4833-2

Palmer, K. L., & Gilmore, M. S. (2010). Multidrug-resistant enterococci lack CRISPR-cas. mBio, 1(4), e00227-10. https://doi.org/10.1128/mBio.00227-10

Price, V. J., Huo, W., Sharifi, A., & Palmer, K. L. (2016). CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis. mSphere, 1(3), e00064-16. https://doi.org/10.1128/mSphere.00064-16

Price, V. J., McBride, S. W., Hullahalli, K., Chatterjee, A., Duerkop, B. A., & Palmer, K. L. (2019). Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine. mSphere, 4(4), e00464-19. https://doi.org/10.1128/mSphere.00464-19

Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L., & Duerkop, B. A. (2019). Conjugative Delivery of CRISPR-Cas9 for the Selective Depletion of Antibiotic-Resistant Enterococci. Antimicrobial agents and chemotherapy, 63(11), e01454-19. https://doi.org/10.1128/AAC.01454-19

Sharifzadeh Peyvasti, V., Mohabati Mobarez, A., Shahcheraghi, F., Khoramabadi, N., Razaz Rahmati, N., & Hosseini Doust, R. (2020). High-level aminoglycoside resistance and distribution of aminoglycoside resistance genes among Enterococcus spp. clinical isolates in Tehran, Iran. Journal of global antimicrobial resistance, 20, 318–323. https://doi.org/10.1016/j.jgar.2019.08.008

Sterling, A. J., Snelling, W. J., Naughton, P. J., Ternan, N. G., & Dooley, J. (2020). Competent but complex communication: The phenomena of pheromone-responsive plasmids. PLoS pathogens, 16(4), e1008310. https://doi.org/10.1371/journal.ppat.1008310

Sully, E. K., & Geller, B. L. (2016). Antisense antimicrobial therapeutics. Current opinion in microbiology, 33, 47–55. https://doi.org/10.1016/j.mib.2016.05.017

Tagliaferri, T. L., Guimarães, N. R., Pereira, M., Vilela, L., Horz, H. P., Dos Santos, S. G., & Mendes, T. (2020). Exploring the Potential of CRISPR-Cas9 Under Challenging Conditions: Facing High-Copy Plasmids and Counteracting Beta-Lactam Resistance in Clinical Strains of Enterobacteriaceae. Frontiers in microbiology, 11, 578. https://doi.org/10.3389/fmicb.2020.00578

Tong, Z., Du, Y., Ling, J., Huang, L., & Ma, J. (2017). Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms. Experimental and therapeutic medicine, 14(6), 5491–5496. https://doi.org/10.3892/etm.2017.5205

Vogkou, C. T., Vlachogiannis, N. I., Palaiodimos, L., & Kousoulis, A. A. (2016). The causative agents in infective endocarditis: a systematic review comprising 33,214 cases. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 35(8), 1227–1245. https://doi.org/10.1007/s10096-016-2660-6

Wada, Y., Harun, A. B., Yean, C. Y., & Zaidah, A. R. (2020). Vancomycin-Resistant Enterococci (VRE) in Nigeria: The First Systematic Review and Meta-Analysis. Antibiotics (Basel, Switzerland), 9(9), 565. https://doi.org/10.3390/antibiotics9090565

Wang, G., Song, G., & Xu, Y. (2020). Association of CRISPR/Cas System with the Drug Resistance in Klebsiella pneumoniae. Infection and drug resistance, 13, 1929–1935. https://doi.org/10.2147/IDR.S253380

Wojciechowska, M., Równicki, M., Mieczkowski, A., Miszkiewicz, J., & Trylska, J. (2020). Antibacterial Peptide Nucleic Acids-Facts and Perspectives. Molecules (Basel, Switzerland), 25(3), 559. https://doi.org/10.3390/molecules25030559

Wu, Z. Y., Huang, Y. T., Chao, W. C., Ho, S. P., Cheng, J. F., & Liu, P. Y. (2019). Reversal of carbapenem-resistance in Shewanella algae by CRISPR/Cas9 genome editing. Journal of advanced research, 18, 61–69. https://doi.org/10.1016/j.jare.2019.01.011

Yoong, P., Schuch, R., Nelson, D., & Fischetti, V. A. (2004). Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. Journal of bacteriology, 186(14), 4808–4812. https://doi.org/10.1128/JB.186.14.4808-4812.2004.

Published

14/02/2022

How to Cite

RIBEIRO, E. E.-S. dos S. N. N. .; ABREU, J. A. C. de .; BRANDÃO, F. Use of CRISPR-Cas in conjugative plasmids to control the spread of antibiotic resistance in Enterococcus: a literature review. Research, Society and Development, [S. l.], v. 11, n. 3, p. e10311326179, 2022. DOI: 10.33448/rsd-v11i3.26179. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26179. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences