Obesogenic diets' impact on behavioral aspects and predictive biomarkers of Alzheimer's disease: a literature review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26299

Keywords:

Obesity; Alzheimer's Disease; Diet.

Abstract

Introduction: Obesity and Alzheimer's Disease (AD) are chronic diseases that affect millions of people around the world. It is currently postulated that obesity may contribute to the establishment of AD. Objective: The aim of this study was to carry out a narrative literature review to analyze the effect of high-fat or high-sucrose obesogenic diets in an animal model and compare the establishment of behavioral changes and predictive AD biomarkers between these models. Method: Searches were performed in LILACS, SciELO and MEDLINE databases in the last ten years. The descriptors “obesity”, “Alzheimer's disease” and “diets” were used. Results: Many studies employ high-fat obesogenic diets to assess the development of obesity and AD parameters. A much smaller number of studies employ obesogenic diets with high sucrose content, but both models show similarities in behavioral changes (memory and cognition deficit), in central biomarkers (beta-amyloid peptide and TAU protein), insulin resistance and neuroinflammation. Conclusion: It is noteworthy that studies with humans have pointed out neuroinflammation, resistance and accumulation of beta-amyloid peptide and hyperphosphorylated Tau protein as probable causes of neurodegeneration and consequent impairment of memory and cognition in AD.

References

ABESO. Associação Brasileira para Estudo da Obesidade e Síndrome Metabólica. (2021). Mapa da Obesidade. https://abeso.org.br/obesidade-e-sindrome-metabolica/mapa-da-obesidade/

ADI. Alzheimer’s disease international. (2019). World Alzheimer Report 2019: Attitudes to dementia. Alzheimer’s Disease International. https://www.alzint.org/u/WorldAlzheimerReport2019.pdf

Baranowski, B. J., Bott, K. N. & MacPherson, R. E. K. (2018). Evaluation of neuropathological effects of a high-fat high-sucrose diet in middle-aged male C57BL6/J mice. Physiol Rep, 6(11), e13729. doi: 10.14814/phy2.13729.

Bhat, N. R. & Thirumangalakudi, L. (2013). Increased tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J Alzheimers Dis, 36(4), 781-789. doi: 10.3233/JAD-2012-121030.

Candeias, E., Duarte, A. I., Carvalho, C., Correia, S. C., Cardoso, S., Santos, R. X., Plácido, A. I., Perry, G. & Moreira, P. I.. (2012). The impairment of insulin signaling in Alzheimer 's disease. IUBMB Life, 64(12), 951-957. doi: 10.1002/iub.1098.

Cao, D., Lu, H., Lewis, T. L. & Li, L. (2007). Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem, 282(50), 36275-82. doi: 10.1074/jbc.M703561200.

Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K. & Xu, E. H. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin, 38(9), 1205-1235. doi: 10.1038/aps.2017.28.

Duyckaerts, C., Delatour, B. & Potier, M. C. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118(1), 5-36. doi: 10.1007/s00401-009-0532-1.

Elahi, F. M. & Miller, B. L. (2017). A clinicopathological approach to the diagnosis of dementia. Nat Rev Neurol, 13(8), 457-476. doi: 10.1038/nrneurol.2017.96.

Flister, K. F. T., Pinto, B. A. S., França, L. M., Coêlho, C. F. F., Dos Santos, P. C., Vale, C. C., Kajihara, D., Debbas, V., Laurindo, F. R. M. & Paes, A. M. A. (2018). Long-term exposure to high-sucrose diet down-regulates hepatic endoplasmic reticulum-stress adaptive pathways and potentiates de novo lipogenesis in weaned male mice. J Nutr Biochem, 62, 155-166. doi: 10.1016/j.jnutbio.2018.09.007.

Gustafson, D., Rothenberg, E., Blennow, K., Steen, B. & Skoog, I. (2003). An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med, 163(13), 1524-1528. doi: 10.1001/archinte.163.13.1524.

Hendrix, R. D., Ou, Y., Davis, J. E., Odle, A. K., Groves, T. R., Allen, A. R., Childs, G. V. & Barger, S. W. (2021). Alzheimer amyloid-β- peptide disrupts membrane localization of glucose transporter 1 in astrocytes: implications for glucose levels in brain and blood. Neurobiol Aging, 97, 73-88. doi: 10.1016/j.neurobiolaging.2020.10.001.

Kothari, V., Luo, Y., Tornabene, T., O'Neill, A. M., Greene, M. W., Geetha, T. & Babu, J. R. (2017). High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis, 1863(2), 499-508. doi: 10.1016/j.bbadis.2016.10.006.

Li, Z. G., Zhang, W. & Sima, A. A. (2007). Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes, 56(7), 1817-1824. doi: 10.2337/db07-0171.

Loureiro, F. M. N., Borges, J. W. P., Moreira, T. M. M., Machado, M. M. T. & Gonzalez, R. H. (2019). Síndrome metabólica e a atividade física em adolescentes: uma revisão integrativa. Revista Saúde e Desenvolvimento Humano, 7(3), 63-72.

Doi: http://dx.doi.org/10.18316/sdh .v7i13.5471

Maeda, S. & Mucke, L. (2016). Tau Phosphorylation-Much More than a Biomarker. Neuron, 92(2), 265-267. doi: 10.1016/j.neuron.2016.10.011.

Maesako, M., Uemura, K., Kubota, M., Kuzuya, A., Sasaki, K., Hayashida, N., Asada-Utsugi, M., Watanabe, K., Uemura, M., Kihara, T., Takahashi, R., Shimohama, S. & Kinoshita, A. (2012). Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice. J Biol Chem, 287(27), 23024-23033. doi: 10.1074/jbc.M112.367011.

Martelli, A. (2013). Alterações Cerebrais e os Efeitos do Exercício Físico no Melhoramento Cognitivo dos Portadores da Doença de Alzheimer. Revista Saúde e Desenvolvimento Humano, 1(1), 49-60.

Mayoral, L. P., Andrade, G. M., Mayoral, E. P., Huerta, T. H., Canseco, S. P., Rodal F. J. C., Cabrera-Fuentes, H. A., Cruz, M. M., Santiago, A. D. P., Alpuche, J. J., Zenteno, E., Ruíz, H. M., Cruz, R. M., Jeronimo, J. H. & Perez-Campos, E. (2020). Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res, 151(1), 11-21. doi: 10.4103/ijmr.IJMR_1768_17.

Nguyen, J. C., Killcross, A. S. & Jenkins, T. A. (2014). Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci, 8(375), 1-9. doi: 10.3389/fnins.2014.00375.

Puig, K. L., Floden, A. M., Adhikari, R., Golovko, M. Y. & Combs, C. K. (2012). Amyloid precursor protein and proinflammatory changes are regulated in brain and adipose tissue in a murine model of high fat diet-induced obesity. PLoS One, 7(1), e30378. doi: 10.1371/journal.pone.0030378.

Rother, E. D. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, (2), 7-8. doi: https://doi.org/10.1590/S0103-21002007000200001.

SBGG. Sociedade Brasileira de Geriatria e Gerontologia. (2021). Em dia mundial do Alzheimer, dados ainda são subestimados, apesar de avanços no diagnóstico e tratamento da doença. https://sbgg.org.br/em-dia-mundial-do-alzheimer-dados-ainda-sao-subestimados-apesar-de-avancos-no-diagnostico-e-tratamento-da-doenca/.

Sousa, J. C. E., Santana, A. C. F. & Magalhães, G. J. P. (2020). Resveratrol in Alzheimer's disease: a review of pathophysiology and therapeutic potential. Arq Neuropsiquiatr, 78 (8), 501-511. doi: 10.1590/0004-282X20200010.

Souza, L. M. O., Miraglia, F., Gomes, F. S. & Saldanha, R. P. (2020). Prevalência de sobrepeso e obesidade em escolares de 7 a 10 anos e seus determinantes associados. Revista Saúde e Desenvolvimento Humano, 8 (2), 29-37. Doi: http://dx.doi.org/10.18316/sdh.v8i2.6231

Spielman, L. J., Little, J. P. & Klegeris, A. (2014). Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol, 273(1-2), 8-21. doi: 10.1016/j.jneuroim.2014.06.004.

Thirumangalakudi, L., Prakasam, A., Zhang, R., Bimonte-Nelson, H., Sambamurti, K., Kindy, M. S. & Bhat, N. R. (2008). High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem, 106(1), 475-485. doi: 10.1111/j.1471-4159.2008.05415. x.

Wanderley, E. M. & Ferreira, V. A. (2010). Obesidade: uma perspectiva plural. Ciência e Saúde Coletiva, (1), 185-194. doi:10.1590/s1413-81232010000100024

Yeh, S. H., Shie, F. S., Liu, H. K., Yao, H. H., Kao, P. C., Lee, Y. H., Chen M. L., Hsu, S. M., Chao, J. L., Young, W. W. K., Huey, J. S. & Tsay, J. H. (2020). A high-sucrose diet aggravates Alzheimer's disease pathology, attenuates hypothalamic leptin signaling, and impairs food-anticipatory activity in APPswe/PS1dE9 mice. Neurobiol Aging, 90, 60-74. doi: 10.1016/j.neurobiolaging.2019.11.018.

Published

12/02/2022

How to Cite

SILVA, L. M. C. da .; MARTELLETO, G. K. S.; MACEDO, A. C. de; MACEDO, I. C. de. Obesogenic diets’ impact on behavioral aspects and predictive biomarkers of Alzheimer’s disease: a literature review. Research, Society and Development, [S. l.], v. 11, n. 3, p. e5611326299, 2022. DOI: 10.33448/rsd-v11i3.26299. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26299. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences