Partial corn replacement by glycerin and vegetable oils (cashew and castor) as alternative additive in the diets of crossbred bulls finished in a feedlot: Carcass characteristics and Longissimus lumborum muscle evaluation
DOI:
https://doi.org/10.33448/rsd-v11i3.26418Keywords:
Anacardium acid; Bio-fuels; Energy; Glycerol; Meat quality; Ricinoleic acid.Abstract
This work was carried out to study the effects of corn grain replacement with glycerin (812 g of glycerol per kg/DM) and vegetable oils (cashew and castor) on the carcass characteristics and meat quality of Purunã bulls finished in a feedlot. A total of 32 Purunã bulls (¼ Aberdeen Angus + ¼ Caracu + ¼ Charolaise + ¼ Canchim) with a mean age of 12 ± 2.0 months and a mean body weight 206.1 ± 20.0 kg were distributed in a completely randomized design with four diets and eight replications per diet. The four experimental diets were as follows: CONT – basal diet; VOIL –basal diet and addition of vegetable oils (3 g/animal/day); GLYC – basal diet and addition of glycerin (20.1% glycerin on a DM basis); GLVO – basal diet and addition of glycerol (20.1% glycerin in DM basis) and vegetal oils (3 g/animal/day). The GLVO diet improved carcass conformation (+12.8%) in comparison with the CONT and GLYC diets. Likewise, fat thickness and proportion of fat in the carcass were higher in the GLVO group (+25.6% and +14.3%, respectively) versus the CONT group. Diets containing glycerin and vegetable oils increased hot (+5.0%) and cold (+5.1%) carcass weights, in comparison to the CONT diet. Diets containing vegetable oils (VOIL and GLVO) improved (+3.4%) carcass dressing relative to the CONT diet. Inclusion of glycerin and vegetable oils did not affect the Longissimus muscle area (68.0 cm2), texture (4.24 points), marbling (6.68 points), or colour (3.51 points) at 24 h post mortem. Likewise, instrumental colour in terms of lightness (32.4), redness (13.9), yellowness (4.94), chroma (14.8), and angle hue (19.1) at 24 h post mortem were unaffected by diet. Finally, the diet did not affect moisture (26.6%), ash (1.1%), crude protein (21.6%), total lipids (2.2%), WBS (3.1 kgf), TBARS (0.28 mg of MDA per kg of meat) or calories (225.5 kcal/100 g of meat). Thus, up to 20% glycerin on a DM basis and vegetable oils from cashew and castor could be added to the diet of bulls finished in a feedlot for 250 days and fed with a high-density energy diet.
References
Abo El-Nor, S., AbuGhazaleh, A.A., Potu, R.B., Hastings, D., Khattab, M.S.A. (2010). Effects of differing levels of glycerol on rumen fermentation and bacteria. Animal Feed Science and Technology 162, 99–105. https://doi.org/10.1016/j.anifeedsci.2010.09.012.
Alexandre, S., Vital, A.C.P., Mottin, C., do Prado, R.M., Ornaghi, M.G., Ramos, T.R., Guerrero, A., Pilau, E.J., Prado, I.N. (2020). Use of alginate edible coating and basil (Ocimum spp) extracts on beef characteristics during storage. Journal of Food Science and Technology 1–9. https://doi.org/10.1007/s13197-020-04844-1.
Benchaar, C., Calsamiglia, S., Chaves, A. V, Fraser, G.R., Colombatto, D., McAllister, T.A., Beauchemin, K.A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology 145, 209–228. https://doi.org/10.1016/j.anifeedsci.2007.04.014.
Botsoglou, N.A., Fletouris, D.J., Papageorgiou, G.E., Vassilopoulos, V.N., Mantis, A.J., Trakatellis, A.G. (1994). Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. Journal of Agricultural and Food Chemistry 42, 1931–1937.
Bradford, B.J., Allen, M.S. (2007). Phlorizin administration does not attenuate hypophagia induced by intraruminal propionate infusion in lactating dairy cattle. The Journal of nutrition 137, 326–330.
Campo, M.M., Nute, G.R., Hughes, S.I., Enser, M., Wood, J.D., Richardson, R.I. (2006). Flavour perception of oxidation in beef. Meat Science 72, 303–311. https://doi.org/10.1016/j.meatsci.2005.07.015.
Chung, Y.H., Rico, D.E., Martinez, C.M., Cassidy, T.W., Noirot, V., Ames, A., Varga, G.A. (2007). Effects of feeding dry glycerin to early postpartum Holstein dairy cows on lactational performance and metabolic profiles. Journal of Dairy Science 90, 5682–5691. https://doi.org/10.3168/jds.2007-0426.
CIOMS/OMS (1985). Council for International Organizations of Medical Services, in: International Guiding Principles for Biomedical Research Involving Animals. WHO Distribution and sales service, Geneva, Switzerland.
Cruz, O.T.B., Valero, M.V., Zawadzki, F., Rivaroli, D.C., Prado, R.M., Lima, B.S., Prado, I.N. (2014). Effect of glycerine and essential oils (anacardium occidentale and ricinus communis) on animal performance, feed efficiency and carcass characteristics of crossbred bulls finished in a feedlot system. Italian Journal of Animal Science 13. https://doi.org/10.4081/ijas.2014.3492.
Ducatti, T., Prado, I.N., Rotta, P.P., Prado, R.M., Perotto, D., Maggioni, D., Visentainer, J.V. (2009). Chemical composition and fatty acid profile in crossbred (bos taurus vs. Bos indicus) young bulls finished in a feedlot. Asian-Australasian Journal of Animal Sciences 22, 433–439. https://doi.org/10.5713/ajas.2009.80255.
Dunne, P.G., Monahan, F.J., O’Mara, F.P., Moloney, A.P. (2009). Colour of bovine subcutaneous adipose tissue: A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history. Meat Science 81, 28–45. https://doi.org/10.1016/j.meatsci.2008.06.013.
Eiras, C.E., Barbosa, L.P., Marques, J.A., Araújo, F.L., Lima, B.S., Zawadzki, F., Perotto, D., Prado, I.N. (2014). Glycerine levels in the diets of crossbred bulls finished in feedlot: Apparent digestibility, feed intake and animal performance. Animal Feed Science and Technology 197. https://doi.org/10.1016/j.anifeedsci.2014.07.004.
Eiras, C E, Marques, J.A., Prado, R.M., Valero, M. V, Bonafé, E.G., Zawadzki, F., Perotto, D., Prado, I.N. (2014). Glycerin levels in the diets of crossbred bulls finished in feedlot: Carcass characteristics and meat quality. Meat Science 96, 930–936. https://doi.org/10.1016/j.meatsci.2013.10.002.
FAPRI, 2021. Food and Agricultural Policy Research Institute [WWW Document]. Food and Agricultural Policy Research Institute.
Faustman, C., Sun, Q., Mancini, R., Suman, S.P. (2010). Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science 86, 86–94. https://doi.org/10.1016/j.meatsci.2010.04.025.
França, J.D.E.F., Oliveira, D.M.M.C., Ribas, C.R., Prado, A.M.B., Dornbusch, P.T.C., Dornbush, P.T., 2015. Denervação acetabular no tratamento da displasia coxofemoral canina: estudo comparativo entre duas abordagens cirúrgicas. Archives of Veterinary Science 20, 8–14.
Françozo, M.C., Prado, I.N., Cecato, U., Valero, M.V., Zawadzki, F., Ribeiro, O.L., Prado, R.M., Visentainer, J.V., 2013. Growth performance, carcass characteristics and meat quality of finishing bulls fed crude glycerin- supplemented diets. Brazilian Archives of Biology and Technology 56. https://doi.org/10.1590/S1516-89132013000200019
Fugita, C.A., Prado, R.M., Valero, M.V., Bonafé, E.G., Carvalho, C.B., Guerrero, A., Sañundo, C., Prado, I.N., 2018. Effect of the inclusion of natural additives on animal performance and meat quality of crossbred bulls (Angus vs. Nellore) finished in feedlot. Animal Production Science 58, 2076–2083. https://doi.org/10.1071/AN16242.
Goff, J.P., Horst, R.L., 2001. Oral glycerol as an aid in the treatment of ketosis/fatty liver complex. Journal of Dairy Science 84 (Supple, 153 (Abstr.).
Hankins, O.G., Howe, P.E., 1946. Estimation of the composition of beef carcasses and cuts. US Department of Agriculture 926, 1–20.
Himejima, M., Kubo, I., 1991. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. Journal of agricultural and food chemistry 39, 418–421.
HMSO, 1994. England Department of Health Nutritional. Aspects of cardiovascular disease. Report on Health and Social Subjects 46, 37–46.
Immonen, K., Ruusunen, M., Puolanne, E., 2000. Some effects of residual glycogen concentration on the physical and sensory quality of normal pH beef. Meat Science 55, 33–38. https://doi.org/10.1016/S0309-1740(99)00122-9.
ISO-R-1442, 1997. Meat and meat products - Determination of moisture content. Method ISO R-1442. International Organization for Standardization, Geneva, Switzerland.
ISO-R-937, 1978. Meat and meat products - Determination of nitrogen content. Method ISO R-937. International Organization for Standardization, Geneva, Switzerland.
Ito, R.H., Prado, I.N., Rotta, P.P., Oliveira, M.G., Prado, R.M., Moletta, J.L., 2012. Carcass characteristics, chemical composition and fatty acid profile of longissimus muscle of young bulls from four genetic groups finished in feedlot. Revista Brasileira de Zootecnia 41. https://doi.org/10.1590/S1516-35982012000200022.
Jeleníková, J., Pipek, P., Staruch, L., 2008. The influence of ante-mortem treatment on relationship between pH and tenderness of beef. Meat Science 80, 870–874. https://doi.org/10.1016/j.meatsci.2008.04.004.
Krehbiel, C.R., 2008. Ruminal and physiological metabolism of glycerin. Journal of animal science E86 (Suppl, 392 (Abstr.).
Kubo, J., Lee, J.R., Kubo, I., 1999. Anti-Helicobacter pylori Agents from the Cashew Apple. Journal of agricultural and food chemistry 47, 533–537. https://doi.org/10.1021/jf9808980
Mach, N., Bach, A., Devant, M., 2009. Effects of crude glycerin supplementation on performance and meat quality of Holstein bulls fed high-concentrate diets. Journal of Animal Science 87, 632–638. https://doi.org/http://jas.fass.org/cgi/content/full/87/2/632.
McAfee, A.J., McSorley, E.M., Cuskelly, G.J., Moss, B.W., Wallace, J.M.W., Bonham, M.P., Fearon, A.M., 2010. Red meat consumption: An overview of the risks and benefits. Meat Science 84, 1. https://doi.org/10.1016/j.meatsci.2009.08.029.
Monteschio, J.O., Souza, K.A., Vital, A.A.C.P., Guerrero, A., Valero, M. V, Kempinski, E.M.B.C., Barcelos, V.C., Nascimento, K.F., Prado, I.N., 2017. Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers. Meat Science 130, 50–57. https://doi.org/10.1016/j.meatsci.2017.04.002.
Monteschio, J.O., Vargas Junior, F.M., Almeida, F.L.A., Pinto, L., Kaneko, I.N., Almeida, A.A., Freitas, L.W., Alves, S.P., Bessa, R.J.B., Prado, I.N., 2019. The effect of encapsulated active principles (eugenol, thymol and vanillin) and clove and rosemary essential oils on the structure, collagen content, chemical composition and fatty acid profile of Nellore heifers muscle. Meat Science 155, 27–35. https://doi.org/10.1016/j.meatsci.2019.04.019.
Muela, E., Sañudo, C., Campo, M.M., Medel, I., Beltrán, J.A., 2010. Effects of cooling temperature and hot carcass weight on the quality of lamb. Meat Science 84, 101–107. https://doi.org/10.1016/j.meatsci.2009.08.020.
Muroi, H., Kubo, A., Kubo, I., 1993. Antimicrobial activity of cashew apple flavor compounds. Journal of agricultural and food chemistry 41, 1106–1109.
Nagabhushana, K.S., Ravindranath, B., 1995. Efficient medium-scale chromatographic group separation of anacardic acids from solvent-extracted cashew nut (Anacardium occidentale) shell liquid. Journal of agricultural and food chemistry 43, 2381–2383. https://doi.org/10.1021/jf00057a012
Narasimhan, B., Belsare, D., Pharande, D., Mourya, V., Dhake, A., 2004. Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry 39, 827–834. https://doi.org/10.1016/j.ejmech.2004.06.013
Ornaghi, M.G., Guerrero, A., Vital, A.C.P., Souza, K.A., Passetti, R.A.C., Mottin, C., Castilho, R.C., Sañudo, C., Prado, I.N., 2020. Improvements in the quality of meat from beef cattle fed natural additives. Meat Science 163, 1–9. https://doi.org/10.1016/j.meatsci.2020.108059.
Page, J.K., Wulf, D.M., Schwotzer, T.R., 2001. A survey of beef muscle color and pH. Journal of Animal Science 79, 678–687. https://doi.org/10.2527/2001.793678x.
Peachey, B.M., Purchas, R.W., Duizer, L.M., 2002. Relationships between sensory and objective measures of meat tenderness of beef m. longissimus thoracis from bulls and steers. Meat Science 60, 211–218. https://doi.org/10.1016/S0309-1740(01)00123-1.
Prado, I.N., Aricetti, J.A., Rotta, P.P., Prado, R.M., Perotto, D., Visentainer, J. V, Matsushita, M., 2008. Carcass characteristics, chemical composition and fatty acid profile of the Longissimus muscle of bulls (Bos taurus indicus vs. Bos taurus taurus) finished in pasture systems. Asian-Australasian Journal of Animal Sciences 21, 1449–1457. https://doi.org/10.5713/ajas.2008.80061.
Prado, I.N., Eiras, C.E., Fugita, C.A., Passetti, R.A.C., Ornaghi, M.G., Rivaroli, D.C., Pinto, A.A., Moletta, J.L., 2015. Animal performance and carcass characteristics of bulls (1/2 Purunã vs 1/2 Canchim) slaughtered at 16 and 22 months old, and three different weights. Asian-Australasian Journal of Animal Sciences 28, 612–619. https://doi.org/10.5713/ajas.14.0793.
Renerre, M., Labas, R., 1987. Biochemical factors influencing metmyoglobin formation in beef muscles. Meat Science 19, 151–165. https://doi.org/10.1016/0309-1740(87)90020-9
Rivaroli, D.C., Campo, M.M., Sañudo, C., Guerrero, A., Jorge, A.M., Vital, A.C.P., Valero, M. V, Prado, R.M., Prado, I.N., 2020. Effect of an essential oils blend on meat characteristics of crossbred heifers finished on a high-grain diet in a feedlot. Animal Production Science 60, 595–602. https://doi.org/10.1071/AN18620.
Rivaroli, D.C., Guerrero, A., Valero, M.V., Zawadzki, F., Eiras, C.E., Campo, M.D.M., Sañudo, C., Jorge, A.M., Prado, I.N., 2016. Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedlots. Meat Science 121, 278–284. https://doi.org/10.1016/j.meatsci.2016.06.017.
Rotta, P.P., Prado, R.M., Prado, I.N., Valero, M.V., Visentainer, J.V., Silva, R.R., 2009. The effects of genetic groups, nutrition, finishing systems and gender of Brazilian cattle on carcass characteristics and beef composition and appearance: A review. Asian-Australasian Journal of Animal Sciences 22, 1718–1734. https://doi.org/10.5713/ajas.2009.90071.
Shackelford, S.D., Wheeler, T.L., Koohmaraie, M., 1999. Evaluation of slice shear force as an objective method of assessing beef longissimus tenderness. Journal of animal science 77, 2693–2699.
Shin, S.Y., Kim, H.R., Kang, S.C., 2004. Antibacterial activity of various hydroxy fatty acids bioconverted by Pseudomonas aeruginosa PR3. Agricultural Chemistry and Biotechnologye 47, 205–208.
Ultee, A., Kets, E.P.W., Alberda, M., Hoekstra, F.A., Smid, E.J., 2000. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of microbiology 174, 233–238. https://doi.org/10.1007/s002030000199
Valero, M.V., Torrecilhas, J.A., Zawadzki, F., Bonafé, E.G., Madrona, G.S., Prado, R.M., Passetti, R.A.C., Rivaroli, D.C., Visentainer, J.V., Prado, I.N., 2014. Propolis or cashew and castor oils effects on composition of longissimus muscle of crossbred bulls finished in feedlot. Chilean Journal of Agricultural Research 74. https://doi.org/10.4067/S0718-58392014000400011.
Valero, M.V., Zawadzki, F., Françozo, M.C., Farias, M.S., Rotta, P.P., Prado, I.N., Visantainer, J.V., Zeoula, L.M., 2011. Sodium monensin or propolis extract in the diet of crossbred (1/2 Red Angus vs. 1/2 Nellore) bulls finished in feedlot: Chemical composition and fatty acid profile of the Longissimus muscle. Semina:Ciencias Agrarias 32. https://doi.org/10.5433/1679-0359.2011v32n4p1617.
Valero, M.V., Zeoula, L.M., Moura, L.P.P., Costa, J.B.G., Sestari, B.B., Prado, I.N., 2015. Propolis extract in the diet of crossbred (1/2 Angus vs. 1/2 Nellore) bulls finished in feedlot: Animal performance, feed efficiency and carcass characteristics. Semina:Ciencias Agrarias 36. https://doi.org/10.5433/1679-0359.2015v36n2p1067.
Valero, M. V, Farias, M.S., Zawadzki, F., Prado, R.M., Fugita, C.A., Rivaroli, D.C., Ornaghi, M.G., Prado, I.N., 2016. Feeding propolis or essential oils (cashew and castor) to bulls: performance, digestibility, and blood cell counts. Revista Colombiana de Ciencias Pecuarias 29, 33–42.
Wheeler, T.L., Shackelford, S.D., Johnson, L.P., Miller, M.F., Miller, R.K., Koohmaraie, M., 1997. A comparison of Warner-Bratzler shear force assessment within and among institutions. Journal of animal science 75, 2423–2432.
Wood, J.D., Enser, M., Fisher, A. V, Nute, G.R., Sheard, P.R., Richardson, R.I., Hughes, S.I., Whittington, F.M., 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Science 78, 343–358. https://doi.org/10.1016/j.meatsci.2007.07.019
Zarai, Z., Chobba, I. Ben, Mansour, R. Ben, Békir, A., Gharsallah, N., Kadri, A., 2012. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids in health and disease 11, 1–6.
Zawadzki, F., Prado, I.N., Marques, J.A., Zeoula, L.M., Rotta, P.P., Sestari, B.B., Valero, M.V., Rivaroli, D.C., 2011a. Sodium monensin or propolis extract in the diets of feedlot-finished bulls: Effects on animal performance and carcass characteristics. Journal of Animal and Feed Sciences 20. https://doi.org/10.22358/jafs/66153/2011
Zawadzki, F., Prado, I.N., Marques, J.J., Zeoula, L.M., Prado, R.M., Fugita, C.A., Valero, M.V., Maggioni, D., 2011b. Sodium monensin or propolis extract in the diet of Nellore bulls finished in feedlot: Chemical composition and fatty acid profile of Longissimus muscle. Semina:Ciencias Agrarias 32, 1627–1636. https://doi.org/10.5433/1679-0359.2011v32n4p1627.
Zawadzki, F., Prado, R.M., Ornaghi, M.G., Carvalho, V.M., Avila, V.A.D., Ramos, T.R., Moletta, J.L., Prado, I.N., 2021. Replacement of corn by glycerine and vegetal oils (cashew and castor oils) as alternative additives feeds in diets of Purunã bulls finished in feedlot. Livestock Science 253, 1–7. https://doi.org/10.1016/j.livsci.2021.104695.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fernando Zawadzki; Venicio Macedo Carvalho; Rodolpho Martin do Prado; Mariana Garcia Ornaghi; Tatiane Rogelio Ramos; Ana Carolina Vital; Edinéia Boni; José Luiz Moletta; Ivanor Nunes do Prado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.