Bioadsorbents produced from organic waste for dye removal: a review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26506

Keywords:

Biosorbents; Activated carbon; Dye; Residue.

Abstract

The use of dyes in the textile industry triggers the contamination of its effluents and its disposal without prior treatment generates environmental impacts. For the immobilization and degradation of contaminating substances, the most efficient and selective technique is adsorption, where the dye molecules are removed when they adhere to the surface of the adsorbent. The use of low-cost materials from organic material residues, such as rice husk, sugarcane bagasse, corn cob, açaí seed, orange peel, fruit bagasse in general in natura or as activated carbon are great resources for removing unwanted substances. The purpose of the article is to present a literature review on the study of adsorbents from organic compounds.  The research was carried out in national and international journals, over the last six years, on activated carbon and biosorbent, with an efficiency of at least 70% in the removal of synthetic dyes.  In the information provided in the survey, most alternative adsorbent materials show high efficiency when compared to commercial coal or others, due to their good morphological properties. Regardless of the physicochemical treatments, the viability of the adsorbents is proven with the analyses carried out.

References

Aboua, K. N., Yobouet, Y. A., Yao, K. B., Gone, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. Journal of Environmental Management, 156, 10-14. https://doi.org/10.1016/j.jenvman.2015.03.006.

Adeniyi, A. G., Otoikhian, K. S., Ighalo, J. O., & Mohammed, I. A. (2019). Pyrolysis of different fruit peel waste via a thermodynamic model. ABUAD J Eng Res Dev, 2, 16-24.

Ahsaine, H. A., Zbair, M., Anfar, Z., Naciri, Y., El Alem, N., & Ezahri, M. J. M. T. C. (2018). Cationic dyes adsorption onto high surface area ‘almond shell’activated carbon: kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry, 8, 121-132. https://doi.org/10.1016/j.mtchem.2018.03.004

Alessandretti, I., de Jesus, R. R., Guedes, S. F., Loss, R. A., de Paula, J. M., & Geraldi, C. A. Q. (2021). Biossorção do corante vermelho escarlate direto por bagaço de mandioca. Research, Society and Development, 10(4), 16510413964-16510413964. https://doi.org/10.33448/rsd-v10i4.13964

Almeida, N. P., & dos Santos, K. G. (2020). Ensino do Laboratório de Engenharia Química baseado em projeto: adsorção de gasolina empregando casca de banana. Research, Society and Development, 9(3), e184932716-e184932716. https://doi.org/10.33448/rsd-v9i3.2716.

Amran, F., & Zaini, M. A. A. (2021). Valorization of Casuarina empty fruit-based activated carbons for dyes removal–activators, isotherm, kinetics and thermodynamics. Surfaces and Interfaces, 101277. https://doi.org/10.1016/j.surfin.2021.101277.

Antunes, S, E. C. E., Pereira, J. E. S., da Silva Ferreira, R. L., de Medeiros, M. D. F. D., & Neto, E. L. B. (2018). Remoção de corante têxtil utilizando a casca do abacaxi como adsorvente natural. HOLOS, 3, 81-97. https://doi.org/ 10.15628/holos.2018.5334.

De Araújo, L. A., Ghiotto, G. A. V. M., Beltran, L. B., Gomes, R. G., & Bergamasco, R. (2021). Estudo cinético da biossorção de vermelho neutro por casca de pinha (Annona squamosa). Brazilian Journal of Development, 7(4), 43317-43326. https://doi.org/10.34117/bjdv7n4-680

Araújo, L. A. D., Januário, E. F. D., Beltran, L. B., Guerra, A. C. S., Gomes, R. G., & Bergamasco, R. (2019). Estudo cinético da biossorção de corante por fruto de aiphanes aculeata. http://rdu.unicesumar.edu.br/handle/123456789/3354

Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 4(1), 37-59. https://doi.org/10.1002/cben.201600010.

Belmabkhout, Y.; Guillerm, V.; Eddaoudi, M. (2016). Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? Chemical Engineering Journal, v. 296, p. 386–397. https://doi.org/10.1016/j.cej.2016.03.124.

Beltran, L. B., Januário, E. F. D., de Araújo, L. A., Souza, A. C., Meloni, C. E. P., Magiero, P. E., ... & Vieira, A. M. S. (2020). Processo de biossorção de corante utilizando casca de tangerina (Citrus reticulata). Brazilian Journal of Development, 6(6), 41760-41771. https://doi.org/10.34117/bjdv6n6-641

Brandão, A. C. T., Queiroz, V., & Silva, R. G. C. (2020). Síntese e caracterização de carvão ativado quimicamente com H3Po4 e NaOH à partir da casca de pequi (Caryocar brasiliense). Brazilian Journal of Development, 6(8), 60945-60962. https://doi.org/10.34117/bjdv6n8-493.

Brito, M. J. P., Veloso, C. M., Santos, L. S., Bonomo, R. C. F., & Fontan, R. D. C. I. (2018). Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder technology, 339, 334-343. https://doi.org/10.1016/j.powtec.2018.08.017.

Ceron, L. P. (2019). Verificação da capacidade de adsorção da cinza da casca de arroz em efluente de cromo hexavalente em fluxo contínuo. Engevista, 21(1), 114-125. https://doi.org/10.22409/engevista.v21i1.13296.

Chahinez, H. O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environmental Technology & Innovation, 19, 100872. https://doi.org/10.1016/j.eti.2020.100872.

Chan, S. L., Tan, Y. P., Abdullah, A. H., & Ong, S. T. (2016). Equilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo Red dyes: Pineapple (Ananas comosus) plant stem. Journal of the Taiwan Institute of Chemical Engineers, 61, 306-315. https://doi.org/10.1016/j.jtice.2016.01.010.

Du, W., Sun, J., Zan, Y., Zhang, Z., Ji, J., Dou, M., & Wang, F. (2017). Biomass-derived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range. RSC advances, 7(74), 46629-46635.

Długosz, O., & Banach, M. (2018). Kinetic, isotherm and thermodynamic investigations of the adsorption of Ag+ and Cu2+ on vermiculite. Journal of Molecular Liquids, 258, 295-309. https://doi.org/10.1016/j.molliq.2018.03.041.

Drweesh, S. A., Fathy, N. A., Wahba, M. A., Hanna, A. A., Akarish, A. I., Elzahany, E. A., ... & Abou-El-Sherbini, K. S. (2016). Equilibrium, kinetic and thermodynamic studies of Pb (II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. Journal of Environmental Chemical Engineering, 4(2), 1674-1684. https://doi.org/10.1016/j.jece.2016.02.005.

Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S. H., & Elshoubaky, G. A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4, 100209. https://doi.org/10.1016/j.clet.2021.100209.

Erdem, M., Orhan, R., Şahin, M., & Aydın, E. (2016). Preparation and characterization of a novel activated carbon from vine shoots by ZnCl 2 activation and investigation of its rifampicine removal capability. Water, Air, & Soil Pollution, 227(7), 1-14. https://doi.org/10.1007/s11270-016-2929-5.

Escudero, L. B., Quintas, P. Y., Wuilloud, R. G., & Dotto, G. L. (2019). Recent advances on elemental biosorption. Environmental Chemistry Letters, 17(1), 409-427.

Escudero-Oñate, C., Fiol, N., Poch, J., & Villaescusa, I. (2017). Valorisation of Lignocellulosic Biomass Wastes for the Removal of Metal Ions from Aqueous Streams: A. Biomass volume estimation and valorization for energy, 381. http://dx.doi.org/10.5772/65958.

Ferreira, B. D., Silva, V. R., Jacobsem, B. B., Yoshida, M. I., & Sebastiao, R. C. (2017). Estudo cinético de decomposição térmica de espumas rígidas de poliuretano por rede neural artificial. Química Nova, 40, 1149-1157. https://doi.org/10.21577/0100-4042.20170128.

Ferreira, C. E. C., Mendonça, N. M., Oliveira, D. C. D., Souza, G. D. S. C. D., & Corrêa, M. S. (2018). Efeito do tempo de contato e massa de carvão ativado do caroço de açaí (1, 2mm) na adsorção de corante catiônico. Ciências ambientais e o desenvolvimento sustentável na Amazônia 3.

Fontana, I. B., Peterson, M., & Cechinel, M. A. P. (2018). Application of brewing waste as biosorbent for the removal of metallic ions present in groundwater and surface waters from coal regions. Journal of environmental chemical engineering, 6(1), 660-670. https://doi.org/10.1016/j.jece.2018.01.005.

Fukutome, A., Kawamoto, H., & Saka, S. (2017). Kinetics and molecular mechanisms for the gas-phase degradation of levoglucosan as a cellulose gasification intermediate. Journal of Analytical and Applied Pyrolysis, 124, 666-676. https://doi.org/10.1016/j.jaap.2016.12.010.

Geetha, P., Latha, M. S., & Koshy, M. (2015). Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: equilibrium study. Journal of Molecular Liquids, 212, 723-730. https://doi.org/10.1016/j.molliq.2015.10.035.

Georgin, J., Marques, B. S., Peres, E. C., Allasia, D., & Dotto, G. L. (2018). Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Science and Technology, 77(6), 1612-1621. https://doi.org/10.2166/wst.2018.041.

De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10-40. https://doi.org/10.1016/j.susmat.2016.06.002.

Gomes, P. B., Bianchi, M. L., & Magalhães, F. (2021). Obtenção de carvão ativado a partir do resíduo fuligem de candeia. Matéria (Rio de Janeiro), 26. https://doi.org/10.1590/S1517-707620210002.1265.

Gul, E., Alrawashdeh, K. A. B., Masek, O., Skreiberg, Ø., Corona, A., Zampilli, M., Wang, L.,Samarasf, P.,Yang, Q., Zhou, H.,Bartocci, P. & Fantozzi, F. (2021). Production and use of biochar from lignin and lignin-rich residues (such as digestate and olive stones) for wastewater treatment. Journal of Analytical and Applied Pyrolysis, 158, 105263. https://doi.org/10.1016/j.jaap.2021.105263.

Gupta, V. K., Carrott, P. J. M., Singh, R., Chaudhary, M., & Kushwaha, S. (2016). Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresource technology, 216, 1066-1076. https://doi.org/10.1016/j.biortech.2016.05.106.

Haque, M. S., Nahar, N., & Sayem, S. M. (2021). Industrial water management and sustainability: Development of SIWP tool for textile industries of Bangladesh. Water Resources and Industry, 25, 100145. https://doi.org/10.1016/j.wri.2021.100145.

Iakovleva, E., Maydannik, P., Ivanova, T. V., Sillanpää, M., Tang, W. Z., Mäkilä, E., ... & Wang, S. (2016). Modified and unmodified low-cost iron-containing solid wastes as adsorbents for efficient removal of As (III) and As (V) from mine water. Journal of Cleaner Production, 133, 1095-1104. https://doi.org/10.1016/j.jclepro.2016.05.147.

Ji, Q., & Li, H. (2021). High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet. Diamond and Related Materials, 118, 108516. https://doi.org/10.1016/j.diamond.2021.108516.

Joshi, N. C. (2017). Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent. European Journal of Pharmacy and Medical Research, 4, 388-393.

Kang, S., Jiang, S., Peng, Z., Lu, Y., Guo, J., Li, J., ... & Lin, X. (2018). Valorization of humins by phosphoric acid activation for activated carbon production. Biomass conversion and biorefinery, 8(4), 889-897. https://doi.org/10.1007/s13399-018-0329-3.

Kausar, A., Iqbal, M., Javed, A., Aftab, K., Bhatti, H. N., & Nouren, S. (2018). Dyes adsorption using clay and modified clay: a review. Journal of Molecular Liquids, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034.

Kavitha, G., Subhapriya, P., Dhanapal, V., Dineshkumar, G., & Venkateswaran, V. (2021). Dye removal kinetics and adsorption studies of activated carbon derived from the stems of Phyllanthus reticulatus. Materials Today: Proceedings, 45, 7934-7938. https://doi.org/10.1016/j.matpr.2020.12.837.

Liew, R. K., Azwar, E., Yek, P. N. Y., Lim, X. Y., Cheng, C. K., Ng, J. H., ... & Lam, S. S. (2018). Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource technology, 266, 1-10. https://doi.org/10.1016/j.biortech.2018.06.051.

De Lima Mesquita, A., Barrero, N. G., Fiorelli, J., Christoforo, A. L., De Faria, L. J. G., & Lahr, F. A. R. (2018). Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) Fruit: A new alternative for the particleboard industry with its potential application in civil construction and furniture. Industrial Crops and Products, 112, 644-651. https://doi.org/10.1016/j.indcrop.2017.12.074.

Medhat, A., El-Maghrabi, H. H., Abdelghany, A., Menem, N. M. A., Raynaud, P., Moustafa, Y. M., ... & Nada, A. A. (2021). Efficiently activated carbons from corn cob for methylene blue adsorption. Applied Surface Science Advances, 3, 100037. https://doi.org/10.1016/j.apsadv.2020.100037.

Meili, L., Lins, P. V., Zanta, C. L. P. S., Soletti, J. I., Ribeiro, L. M. O., Dornelas, C. B., Silva, T. L. & Vieira, M. G. A. (2019). MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, 168, 11-20. https://doi.org/10.1016/j.clay.2018.10.012.

Meryemoglu, B., Irmak, S., & Hasanoglu, A. (2016). Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous-phase reforming process. Fuel Processing Technology, 151, 59-63. https://doi.org/10.1016/j.fuproc.2016.05.040.

Mohseni-Bandpi, A., Al-Musawi, T. J., Ghahramani, E., Zarrabi, M., Mohebi, S., & Vahed, S. A. (2016). Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. Journal of Molecular Liquids, 218, 615-624. https://doi.org/10.1016/j.molliq.2016.02.092.

Morais, R. M., Santana, G. M., Lelis, R. C. C., Paes, J. B., Schueler, M. V. E., & Morbeck, F. L. (2019). Produção e desempenho de carvão ativado fisicamente a partir de Bambusa vulgaris. Pesquisa Florestal Brasileira, 39. https://doi.org/10.4336/2019.pfb.39e201801668.

Müller, L. C., Alves, A. A. D. A., Mondardo, R. I., & Sens, M. L. (2019). Adsorção do azul de metileno em serragem de Pinus elliottii (pinus) e Drepanostachyum falcatum (bambu). Engenharia Sanitaria e Ambiental, 24, 687-695. https://doi.org/10.1590/S1413-41522019160344.

Muniyandi, M., Govindaraj, P.,Balji, B. (2021). Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.468.

Do Nascimento, A. C. C., da Cruz Filho, I. J., de Lima, V. F., do Nascimento Junior, A. J., Marques, O. M., & Gondim, M. V. S. (2017). Biossorção do corante índigo carmim por Pennisetum purpureum Schumach. 1827 (Poales: Poaceae)(Capim elefante). Journal of Environmental Analysis and Progress, 44-49. https://doi.org/10.24221/jeap.2.1. 2017. 1033.44-49.

Nascimento, R., Lima, A. C. A., Vidal, C. B., Melo, D. Q., Raulino, G. S. C. (2020). Adsorção: aspectos teóricos e aplicações ambientais. 2ª Edição. Fortaleza: Imprensa Universitária.

Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-Moghadam, F., ... & Dindarloo, K. (2018). Preparation, characterization and Cr (VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresource technology, 258, 48-56. https://doi.org/10.1016/j.biortech. 2018. 02.106.

Okoli, C. (2019). Guia para realizar uma Revisão Sistemática de Literatura. EAD em Foco, 9(1). https://doi.org/10.18264/eadf.v9i1.748.

De Oliveira, A. P., Módenes, A. N., Bragião, M. E., Hinterholz, C. L., Trigueros, D. E., & Isabella, G. D. O. (2018). Use of grape pomace as a biosorbent for the removal of the Brown KROM KGT dye. Bioresource Technology Reports, 2, 92-99. https://doi.org/10.1016/j.biteb.2018.05.001.

Pathania, D., Sharma, A., & Siddiqi, Z. M. (2016). Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. Journal of Molecular Liquids, 219, 359-367. https://doi.org/10.1016/j.molliq. 2016.03.020.

Peláez-Cid, A. A., Herrera-González, A. M., Salazar-Villanueva, M., & Bautista-Hernández, A. (2016). Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. Journal of environmental management, 181, 269-278. https://doi.org/10.1016/j.jenvman.2016.06.026.

Perrich, J. R. (2018). Activated carbon adsorption for wastewater treatment. CRC press.

Queiroz, M. T. A., de Lima, L. R. P., Alvim, L. B., Leão, M. M. D., & Amorim, C. C. (2016). Gestão de resíduos na indústria têxtil e sua relação com a qualidade da água: estudo de caso. Iberoamerican Journal of Industrial Engineering, 8(15), 114-135.

Rajapaksha, A. U., Premarathna, K. S. D., Gunarathne, V., Ahmed, A., & Vithanage, M. (2019). Sorptive removal of pharmaceutical and personal care products from water and wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (pp. 213-238). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-816189-0.00009-3.

Rangabhashiyam, S., Lata, S., & Balasubramanian, P. (2018). Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surfaces and Interfaces, 10, 197-215. https://doi.org/10.1016/j.surfin.2017.09.011

Reddy, P. M. K., Verma, P., & Subrahmanyam, C. (2016). Bio-waste derived adsorbent material for methylene blue adsorption. Journal of the Taiwan Institute of Chemical Engineers, 58, 500-508. https://doi.org/10.1016/j.jtice.2015.07.006.

Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., de Oliveira Schmitz, A. P., ... & Geraldi, C. A. Q. (2020). Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecological Engineering, 150, 105817. https://doi.org/10.1016/j.ecoleng.2020.105817

Rodrigues, D. L. C., Machado, F. M., Osório, A. G., de Azevedo, C. F., Lima, E. C., da Silva, R. S., ... & Gonçalves, F. M. (2020). Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies. Environmental Science and Pollution Research, 27(33), 41394-41404. https://doi.org/10.1007/s11356-020-09583-6.

Sanfeld, A., Royer, C., & Steinchen, A. (2015). Thermodynamic, kinetic and conformational analysis of proteins diffusion–sorption on a solid surface. Advances in colloid and interface science, 222, 639-660. https://doi.org/10.1016/j.cis.2014.10.006.

Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process safety and environmental protection, 143, 138-163.

Sayğılı, H., & Sayğılı, G. A. (2019). Optimized preparation for bimodal porous carbon from lentil processing waste by microwave-assisted K2CO3 activation: spectroscopic characterization and dye decolorization activity. Journal of cleaner production, 226, 968-976. https://doi.org/10.1016/j.jclepro.2019.04.121.

Dos Santos Escobar, O., de Azevedo, C. F., Swarowsky, A., Adebayo, M. A., Netto, M. S., & Machado, F. M. (2021). Utilization of different parts of Moringa oleifera Lam. seeds as biosorbents to remove Acid Blue 9 synthetic dye. Journal of Environmental Chemical Engineering, 9(4), 105553. https://doi.org/10.1016/j.jece.2021.105553.

Shakoor, S., & Nasar, A. (2016). Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 66, 154-163. https://doi.org/10.1016/j.jtice.2016.06.009.

Siddique, K., Rizwan, M., Shahid, M. J., Ali, S., Ahmad, R., & Rizvi, H. (2017). Textile wastewater treatment options: a critical review. Enhancing cleanup of environmental pollutants, 183-207. https://doi.org/10.1007/978-3-319-55423-5_6.

Silva, E., de Araujo, E. B., Andrade, T. D., de Almeida, A. R. F., & Zottis, R. (2018). Produção de carvão ativado a partir da palha de azevém para adsorção de corante têxtil. Revista da Jornada de Pós-Graduação e Pesquisa-Congrega Urcamp, 194-208.

Silva, F., Nascimento, L., Brito, M., da Silva, K., Paschoal, W., & Fujiyama, R. (2019). Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials, 12(15), 2486. https://doi.org/10.3390/ma12152486.

Silva, J., & Braga, N. (2018). Produção de carvão ativado a partir da embaúba (cecropia sp.) e sua aplicação na adsorção do corante azul de metileno. XXII Congresso Brasileiro de Engenharia Química. https://doi.org/ 10.5151/cobeq2018-PT.0441.

Da Silva, J. P. S., Barral, A. V. S., Azevedo, L. E. C., Oliveira, T. S., de Sousa, A. A. O., Nobre, J. R. C., ... & Sousa, V. C. (2021). Carvão ativado oriundo do mesocarpo do fruto da castanha de caju (Anacardium ccidentale) na remoção de corante em meio aquoso. Research, Society and Development, 10(3), 21710313221-21710313221. https://doi.org/10.33448/rsd-v10i3.13221.

Da Silva, W. L. L., & Simoni, J. D. A. (2018). Estudo termodinâmico da adsorção de cobre (II) em montmorilonita organicamente modificada. Cerâmica, 64, 403-412. https://doi.org/10.1590/0366-69132018643712395.

Shooto, N. D., Thabede, P. M., Bhila, B., Moloto, H., & Naidoo, E. B. (2020). Lead ions and methylene blue dye removal from aqueous solution by mucuna beans (velvet beans) adsorbents. Journal of Environmental Chemical Engineering, 8(2), 103557. https://doi.org/10.1016/j.jece.2019.103557.

Souza, N. B. A., Bitencourt, D. D. S. L., da Rosa, G. S., & de Almeida, A. R. F. (2021). Produção de carvão ativado a partir do resíduo da casca da acácia negra para adsorção de nimesulida. Revista da Jornada de Pós-Graduação e Pesquisa-Congrega Urcamp, 17, 173-186.

Somsesta, N., Sricharoenchaikul, V., & Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Materials Chemistry and Physics, 240, 122221. https://doi.org/10.1016/j.matchemphys.2019.122221.

Stavrinou, A., Aggelopoulos, C. A., & Tsakiroglou, C. D. (2018). Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. Journal of environmental chemical engineering, 6(6), 6958-6970. https://doi.org/10.1016/j.jece.2018.10.063.

Tan, X., Liu, Y., Gu, Y., Zeng, G., Wang, X., Hu, X., ... & Yang, Z. (2015). Immobilization of Cd (II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 22(16), 12597-12604. https://doi.org/10.1007/s11356-015-4523-6.

Tien, C. (2018). Introduction to adsorption: Basics, analysis, and applications. Elsevier.

Tran, H. N., You, S. J., & Chao, H. P. (2016). Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 4(3), 2671-2682. https://doi.org/10.1016/j.jece.2016.05.009.

Van Dinter, R., Tekinerdogan, B., & Catal, C. (2021). Automation of systematic literature reviews: A systematic literature review. Information and Software Technology, 106589. https://doi.org/10.1016/j.infsof.2021.106589.

Varila, T., Bergna, D., Lahti, R., Romar, H., Hu, T., & Lassi, U. (2017). Activated carbon production from peat using ZnCl2: Characterization and applications. BioResources, 12(4), 8078-8092.

Yaashikaa, P. R., Kumar, P. S., Saravanan, A., & Vo, D. V. N. (2021). Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook. Journal of Hazardous Materials, 420, 126596. https://doi.org/10.1016/j.jhazmat.2021.126596.

Yamil, L. D. O., Georgin, J., Franco, D. S., Netto, M. S., Grassi, P., Piccilli, D. G., ... & Dotto, G. L. (2020). Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations. Advanced Powder Technology, 31(7), 2843-2852.https://doi.org/10.1016/j.apt.2020.05.004.

Zhang, W. Q., Sui, X., Yu, B., Shen, Y. Q., & Cong, H. L. (2019). Preparation of high specific surface area and high adsorptive activated carbon by KOH activation. Integrated ferroelectrics, 199(1), 22-29. https://doi.org/10.1080/10584587.2019.159259.

Published

21/02/2022

How to Cite

PIQUET, A. B. M.; MARTELLI, M. C. . Bioadsorbents produced from organic waste for dye removal: a review. Research, Society and Development, [S. l.], v. 11, n. 3, p. e27311326506, 2022. DOI: 10.33448/rsd-v11i3.26506. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26506. Acesso em: 14 nov. 2024.

Issue

Section

Engineerings