Bioadsorventes produzidos a partir de resíduos orgânicos para remoção de corantes: uma revisão
DOI:
https://doi.org/10.33448/rsd-v11i3.26506Palavras-chave:
Biossorventes; Carvão ativado; Corante; Resíduo.Resumo
A utilização dos corantes na indústria têxtil desencadeia a contaminação dos seus efluentes e seu descarte sem tratamento prévio gera impactos ambientais. Para a imobilização e degradação das substâncias contaminantes, a técnica mais eficiente e seletiva é a adsorção, onde as moléculas do corante são removidas quando se aderem na superfície do adsorvente. A utilização de materiais de baixo custo provenientes de resíduos de materiais orgânicos, como casca de arroz, bagaço de cana-de-açúcar, sabugo de milho, caroço de açaí, casca de laranja, bagaço de frutas no geral in natura ou como carvão ativado são ótimos recursos para remoção de substâncias indesejadas. O objetivo do presente artigo é apresentar uma revisão de literatura sobre o estudo de adsorventes a partir de compostos orgânicos. A pesquisa foi realizada em periódicos de base nacional e internacional, dos últimos seis anos, sobre carvão ativado e biossorvente, com eficiência de, no mínimo 70% na remoção de corantes sintéticos. Nas informações disponibilizadas no levantamento apontam que a maioria dos materiais adsorventes alternativos apresenta eficiência alta quando comparada com carvão comercial ou outros, devido às boas propriedades morfológicas. Independentemente dos tratamentos físico-químicos, a viabilidade dos adsorventes é comprovada com as análises realizadas.
Referências
Aboua, K. N., Yobouet, Y. A., Yao, K. B., Gone, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. Journal of Environmental Management, 156, 10-14. https://doi.org/10.1016/j.jenvman.2015.03.006.
Adeniyi, A. G., Otoikhian, K. S., Ighalo, J. O., & Mohammed, I. A. (2019). Pyrolysis of different fruit peel waste via a thermodynamic model. ABUAD J Eng Res Dev, 2, 16-24.
Ahsaine, H. A., Zbair, M., Anfar, Z., Naciri, Y., El Alem, N., & Ezahri, M. J. M. T. C. (2018). Cationic dyes adsorption onto high surface area ‘almond shell’activated carbon: kinetics, equilibrium isotherms and surface statistical modeling. Materials Today Chemistry, 8, 121-132. https://doi.org/10.1016/j.mtchem.2018.03.004
Alessandretti, I., de Jesus, R. R., Guedes, S. F., Loss, R. A., de Paula, J. M., & Geraldi, C. A. Q. (2021). Biossorção do corante vermelho escarlate direto por bagaço de mandioca. Research, Society and Development, 10(4), 16510413964-16510413964. https://doi.org/10.33448/rsd-v10i4.13964
Almeida, N. P., & dos Santos, K. G. (2020). Ensino do Laboratório de Engenharia Química baseado em projeto: adsorção de gasolina empregando casca de banana. Research, Society and Development, 9(3), e184932716-e184932716. https://doi.org/10.33448/rsd-v9i3.2716.
Amran, F., & Zaini, M. A. A. (2021). Valorization of Casuarina empty fruit-based activated carbons for dyes removal–activators, isotherm, kinetics and thermodynamics. Surfaces and Interfaces, 101277. https://doi.org/10.1016/j.surfin.2021.101277.
Antunes, S, E. C. E., Pereira, J. E. S., da Silva Ferreira, R. L., de Medeiros, M. D. F. D., & Neto, E. L. B. (2018). Remoção de corante têxtil utilizando a casca do abacaxi como adsorvente natural. HOLOS, 3, 81-97. https://doi.org/ 10.15628/holos.2018.5334.
De Araújo, L. A., Ghiotto, G. A. V. M., Beltran, L. B., Gomes, R. G., & Bergamasco, R. (2021). Estudo cinético da biossorção de vermelho neutro por casca de pinha (Annona squamosa). Brazilian Journal of Development, 7(4), 43317-43326. https://doi.org/10.34117/bjdv7n4-680
Araújo, L. A. D., Januário, E. F. D., Beltran, L. B., Guerra, A. C. S., Gomes, R. G., & Bergamasco, R. (2019). Estudo cinético da biossorção de corante por fruto de aiphanes aculeata. http://rdu.unicesumar.edu.br/handle/123456789/3354
Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews, 4(1), 37-59. https://doi.org/10.1002/cben.201600010.
Belmabkhout, Y.; Guillerm, V.; Eddaoudi, M. (2016). Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? Chemical Engineering Journal, v. 296, p. 386–397. https://doi.org/10.1016/j.cej.2016.03.124.
Beltran, L. B., Januário, E. F. D., de Araújo, L. A., Souza, A. C., Meloni, C. E. P., Magiero, P. E., ... & Vieira, A. M. S. (2020). Processo de biossorção de corante utilizando casca de tangerina (Citrus reticulata). Brazilian Journal of Development, 6(6), 41760-41771. https://doi.org/10.34117/bjdv6n6-641
Brandão, A. C. T., Queiroz, V., & Silva, R. G. C. (2020). Síntese e caracterização de carvão ativado quimicamente com H3Po4 e NaOH à partir da casca de pequi (Caryocar brasiliense). Brazilian Journal of Development, 6(8), 60945-60962. https://doi.org/10.34117/bjdv6n8-493.
Brito, M. J. P., Veloso, C. M., Santos, L. S., Bonomo, R. C. F., & Fontan, R. D. C. I. (2018). Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder technology, 339, 334-343. https://doi.org/10.1016/j.powtec.2018.08.017.
Ceron, L. P. (2019). Verificação da capacidade de adsorção da cinza da casca de arroz em efluente de cromo hexavalente em fluxo contínuo. Engevista, 21(1), 114-125. https://doi.org/10.22409/engevista.v21i1.13296.
Chahinez, H. O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environmental Technology & Innovation, 19, 100872. https://doi.org/10.1016/j.eti.2020.100872.
Chan, S. L., Tan, Y. P., Abdullah, A. H., & Ong, S. T. (2016). Equilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo Red dyes: Pineapple (Ananas comosus) plant stem. Journal of the Taiwan Institute of Chemical Engineers, 61, 306-315. https://doi.org/10.1016/j.jtice.2016.01.010.
Du, W., Sun, J., Zan, Y., Zhang, Z., Ji, J., Dou, M., & Wang, F. (2017). Biomass-derived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range. RSC advances, 7(74), 46629-46635.
Długosz, O., & Banach, M. (2018). Kinetic, isotherm and thermodynamic investigations of the adsorption of Ag+ and Cu2+ on vermiculite. Journal of Molecular Liquids, 258, 295-309. https://doi.org/10.1016/j.molliq.2018.03.041.
Drweesh, S. A., Fathy, N. A., Wahba, M. A., Hanna, A. A., Akarish, A. I., Elzahany, E. A., ... & Abou-El-Sherbini, K. S. (2016). Equilibrium, kinetic and thermodynamic studies of Pb (II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. Journal of Environmental Chemical Engineering, 4(2), 1674-1684. https://doi.org/10.1016/j.jece.2016.02.005.
Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S. H., & Elshoubaky, G. A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 4, 100209. https://doi.org/10.1016/j.clet.2021.100209.
Erdem, M., Orhan, R., Şahin, M., & Aydın, E. (2016). Preparation and characterization of a novel activated carbon from vine shoots by ZnCl 2 activation and investigation of its rifampicine removal capability. Water, Air, & Soil Pollution, 227(7), 1-14. https://doi.org/10.1007/s11270-016-2929-5.
Escudero, L. B., Quintas, P. Y., Wuilloud, R. G., & Dotto, G. L. (2019). Recent advances on elemental biosorption. Environmental Chemistry Letters, 17(1), 409-427.
Escudero-Oñate, C., Fiol, N., Poch, J., & Villaescusa, I. (2017). Valorisation of Lignocellulosic Biomass Wastes for the Removal of Metal Ions from Aqueous Streams: A. Biomass volume estimation and valorization for energy, 381. http://dx.doi.org/10.5772/65958.
Ferreira, B. D., Silva, V. R., Jacobsem, B. B., Yoshida, M. I., & Sebastiao, R. C. (2017). Estudo cinético de decomposição térmica de espumas rígidas de poliuretano por rede neural artificial. Química Nova, 40, 1149-1157. https://doi.org/10.21577/0100-4042.20170128.
Ferreira, C. E. C., Mendonça, N. M., Oliveira, D. C. D., Souza, G. D. S. C. D., & Corrêa, M. S. (2018). Efeito do tempo de contato e massa de carvão ativado do caroço de açaí (1, 2mm) na adsorção de corante catiônico. Ciências ambientais e o desenvolvimento sustentável na Amazônia 3.
Fontana, I. B., Peterson, M., & Cechinel, M. A. P. (2018). Application of brewing waste as biosorbent for the removal of metallic ions present in groundwater and surface waters from coal regions. Journal of environmental chemical engineering, 6(1), 660-670. https://doi.org/10.1016/j.jece.2018.01.005.
Fukutome, A., Kawamoto, H., & Saka, S. (2017). Kinetics and molecular mechanisms for the gas-phase degradation of levoglucosan as a cellulose gasification intermediate. Journal of Analytical and Applied Pyrolysis, 124, 666-676. https://doi.org/10.1016/j.jaap.2016.12.010.
Geetha, P., Latha, M. S., & Koshy, M. (2015). Biosorption of malachite green dye from aqueous solution by calcium alginate nanoparticles: equilibrium study. Journal of Molecular Liquids, 212, 723-730. https://doi.org/10.1016/j.molliq.2015.10.035.
Georgin, J., Marques, B. S., Peres, E. C., Allasia, D., & Dotto, G. L. (2018). Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Science and Technology, 77(6), 1612-1621. https://doi.org/10.2166/wst.2018.041.
De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10-40. https://doi.org/10.1016/j.susmat.2016.06.002.
Gomes, P. B., Bianchi, M. L., & Magalhães, F. (2021). Obtenção de carvão ativado a partir do resíduo fuligem de candeia. Matéria (Rio de Janeiro), 26. https://doi.org/10.1590/S1517-707620210002.1265.
Gul, E., Alrawashdeh, K. A. B., Masek, O., Skreiberg, Ø., Corona, A., Zampilli, M., Wang, L.,Samarasf, P.,Yang, Q., Zhou, H.,Bartocci, P. & Fantozzi, F. (2021). Production and use of biochar from lignin and lignin-rich residues (such as digestate and olive stones) for wastewater treatment. Journal of Analytical and Applied Pyrolysis, 158, 105263. https://doi.org/10.1016/j.jaap.2021.105263.
Gupta, V. K., Carrott, P. J. M., Singh, R., Chaudhary, M., & Kushwaha, S. (2016). Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresource technology, 216, 1066-1076. https://doi.org/10.1016/j.biortech.2016.05.106.
Haque, M. S., Nahar, N., & Sayem, S. M. (2021). Industrial water management and sustainability: Development of SIWP tool for textile industries of Bangladesh. Water Resources and Industry, 25, 100145. https://doi.org/10.1016/j.wri.2021.100145.
Iakovleva, E., Maydannik, P., Ivanova, T. V., Sillanpää, M., Tang, W. Z., Mäkilä, E., ... & Wang, S. (2016). Modified and unmodified low-cost iron-containing solid wastes as adsorbents for efficient removal of As (III) and As (V) from mine water. Journal of Cleaner Production, 133, 1095-1104. https://doi.org/10.1016/j.jclepro.2016.05.147.
Ji, Q., & Li, H. (2021). High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet. Diamond and Related Materials, 118, 108516. https://doi.org/10.1016/j.diamond.2021.108516.
Joshi, N. C. (2017). Heavy metals, conventional methods for heavy metal removal, biosorption and the development of low cost adsorbent. European Journal of Pharmacy and Medical Research, 4, 388-393.
Kang, S., Jiang, S., Peng, Z., Lu, Y., Guo, J., Li, J., ... & Lin, X. (2018). Valorization of humins by phosphoric acid activation for activated carbon production. Biomass conversion and biorefinery, 8(4), 889-897. https://doi.org/10.1007/s13399-018-0329-3.
Kausar, A., Iqbal, M., Javed, A., Aftab, K., Bhatti, H. N., & Nouren, S. (2018). Dyes adsorption using clay and modified clay: a review. Journal of Molecular Liquids, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034.
Kavitha, G., Subhapriya, P., Dhanapal, V., Dineshkumar, G., & Venkateswaran, V. (2021). Dye removal kinetics and adsorption studies of activated carbon derived from the stems of Phyllanthus reticulatus. Materials Today: Proceedings, 45, 7934-7938. https://doi.org/10.1016/j.matpr.2020.12.837.
Liew, R. K., Azwar, E., Yek, P. N. Y., Lim, X. Y., Cheng, C. K., Ng, J. H., ... & Lam, S. S. (2018). Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource technology, 266, 1-10. https://doi.org/10.1016/j.biortech.2018.06.051.
De Lima Mesquita, A., Barrero, N. G., Fiorelli, J., Christoforo, A. L., De Faria, L. J. G., & Lahr, F. A. R. (2018). Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) Fruit: A new alternative for the particleboard industry with its potential application in civil construction and furniture. Industrial Crops and Products, 112, 644-651. https://doi.org/10.1016/j.indcrop.2017.12.074.
Medhat, A., El-Maghrabi, H. H., Abdelghany, A., Menem, N. M. A., Raynaud, P., Moustafa, Y. M., ... & Nada, A. A. (2021). Efficiently activated carbons from corn cob for methylene blue adsorption. Applied Surface Science Advances, 3, 100037. https://doi.org/10.1016/j.apsadv.2020.100037.
Meili, L., Lins, P. V., Zanta, C. L. P. S., Soletti, J. I., Ribeiro, L. M. O., Dornelas, C. B., Silva, T. L. & Vieira, M. G. A. (2019). MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, 168, 11-20. https://doi.org/10.1016/j.clay.2018.10.012.
Meryemoglu, B., Irmak, S., & Hasanoglu, A. (2016). Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous-phase reforming process. Fuel Processing Technology, 151, 59-63. https://doi.org/10.1016/j.fuproc.2016.05.040.
Mohseni-Bandpi, A., Al-Musawi, T. J., Ghahramani, E., Zarrabi, M., Mohebi, S., & Vahed, S. A. (2016). Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. Journal of Molecular Liquids, 218, 615-624. https://doi.org/10.1016/j.molliq.2016.02.092.
Morais, R. M., Santana, G. M., Lelis, R. C. C., Paes, J. B., Schueler, M. V. E., & Morbeck, F. L. (2019). Produção e desempenho de carvão ativado fisicamente a partir de Bambusa vulgaris. Pesquisa Florestal Brasileira, 39. https://doi.org/10.4336/2019.pfb.39e201801668.
Müller, L. C., Alves, A. A. D. A., Mondardo, R. I., & Sens, M. L. (2019). Adsorção do azul de metileno em serragem de Pinus elliottii (pinus) e Drepanostachyum falcatum (bambu). Engenharia Sanitaria e Ambiental, 24, 687-695. https://doi.org/10.1590/S1413-41522019160344.
Muniyandi, M., Govindaraj, P.,Balji, B. (2021). Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.468.
Do Nascimento, A. C. C., da Cruz Filho, I. J., de Lima, V. F., do Nascimento Junior, A. J., Marques, O. M., & Gondim, M. V. S. (2017). Biossorção do corante índigo carmim por Pennisetum purpureum Schumach. 1827 (Poales: Poaceae)(Capim elefante). Journal of Environmental Analysis and Progress, 44-49. https://doi.org/10.24221/jeap.2.1. 2017. 1033.44-49.
Nascimento, R., Lima, A. C. A., Vidal, C. B., Melo, D. Q., Raulino, G. S. C. (2020). Adsorção: aspectos teóricos e aplicações ambientais. 2ª Edição. Fortaleza: Imprensa Universitária.
Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-Moghadam, F., ... & Dindarloo, K. (2018). Preparation, characterization and Cr (VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste. Bioresource technology, 258, 48-56. https://doi.org/10.1016/j.biortech. 2018. 02.106.
Okoli, C. (2019). Guia para realizar uma Revisão Sistemática de Literatura. EAD em Foco, 9(1). https://doi.org/10.18264/eadf.v9i1.748.
De Oliveira, A. P., Módenes, A. N., Bragião, M. E., Hinterholz, C. L., Trigueros, D. E., & Isabella, G. D. O. (2018). Use of grape pomace as a biosorbent for the removal of the Brown KROM KGT dye. Bioresource Technology Reports, 2, 92-99. https://doi.org/10.1016/j.biteb.2018.05.001.
Pathania, D., Sharma, A., & Siddiqi, Z. M. (2016). Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. Journal of Molecular Liquids, 219, 359-367. https://doi.org/10.1016/j.molliq. 2016.03.020.
Peláez-Cid, A. A., Herrera-González, A. M., Salazar-Villanueva, M., & Bautista-Hernández, A. (2016). Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. Journal of environmental management, 181, 269-278. https://doi.org/10.1016/j.jenvman.2016.06.026.
Perrich, J. R. (2018). Activated carbon adsorption for wastewater treatment. CRC press.
Queiroz, M. T. A., de Lima, L. R. P., Alvim, L. B., Leão, M. M. D., & Amorim, C. C. (2016). Gestão de resíduos na indústria têxtil e sua relação com a qualidade da água: estudo de caso. Iberoamerican Journal of Industrial Engineering, 8(15), 114-135.
Rajapaksha, A. U., Premarathna, K. S. D., Gunarathne, V., Ahmed, A., & Vithanage, M. (2019). Sorptive removal of pharmaceutical and personal care products from water and wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (pp. 213-238). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-816189-0.00009-3.
Rangabhashiyam, S., Lata, S., & Balasubramanian, P. (2018). Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surfaces and Interfaces, 10, 197-215. https://doi.org/10.1016/j.surfin.2017.09.011
Reddy, P. M. K., Verma, P., & Subrahmanyam, C. (2016). Bio-waste derived adsorbent material for methylene blue adsorption. Journal of the Taiwan Institute of Chemical Engineers, 58, 500-508. https://doi.org/10.1016/j.jtice.2015.07.006.
Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., de Oliveira Schmitz, A. P., ... & Geraldi, C. A. Q. (2020). Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecological Engineering, 150, 105817. https://doi.org/10.1016/j.ecoleng.2020.105817
Rodrigues, D. L. C., Machado, F. M., Osório, A. G., de Azevedo, C. F., Lima, E. C., da Silva, R. S., ... & Gonçalves, F. M. (2020). Adsorption of amoxicillin onto high surface area–activated carbons based on olive biomass: kinetic and equilibrium studies. Environmental Science and Pollution Research, 27(33), 41394-41404. https://doi.org/10.1007/s11356-020-09583-6.
Sanfeld, A., Royer, C., & Steinchen, A. (2015). Thermodynamic, kinetic and conformational analysis of proteins diffusion–sorption on a solid surface. Advances in colloid and interface science, 222, 639-660. https://doi.org/10.1016/j.cis.2014.10.006.
Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process safety and environmental protection, 143, 138-163.
Sayğılı, H., & Sayğılı, G. A. (2019). Optimized preparation for bimodal porous carbon from lentil processing waste by microwave-assisted K2CO3 activation: spectroscopic characterization and dye decolorization activity. Journal of cleaner production, 226, 968-976. https://doi.org/10.1016/j.jclepro.2019.04.121.
Dos Santos Escobar, O., de Azevedo, C. F., Swarowsky, A., Adebayo, M. A., Netto, M. S., & Machado, F. M. (2021). Utilization of different parts of Moringa oleifera Lam. seeds as biosorbents to remove Acid Blue 9 synthetic dye. Journal of Environmental Chemical Engineering, 9(4), 105553. https://doi.org/10.1016/j.jece.2021.105553.
Shakoor, S., & Nasar, A. (2016). Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. Journal of the Taiwan Institute of Chemical Engineers, 66, 154-163. https://doi.org/10.1016/j.jtice.2016.06.009.
Siddique, K., Rizwan, M., Shahid, M. J., Ali, S., Ahmad, R., & Rizvi, H. (2017). Textile wastewater treatment options: a critical review. Enhancing cleanup of environmental pollutants, 183-207. https://doi.org/10.1007/978-3-319-55423-5_6.
Silva, E., de Araujo, E. B., Andrade, T. D., de Almeida, A. R. F., & Zottis, R. (2018). Produção de carvão ativado a partir da palha de azevém para adsorção de corante têxtil. Revista da Jornada de Pós-Graduação e Pesquisa-Congrega Urcamp, 194-208.
Silva, F., Nascimento, L., Brito, M., da Silva, K., Paschoal, W., & Fujiyama, R. (2019). Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials, 12(15), 2486. https://doi.org/10.3390/ma12152486.
Silva, J., & Braga, N. (2018). Produção de carvão ativado a partir da embaúba (cecropia sp.) e sua aplicação na adsorção do corante azul de metileno. XXII Congresso Brasileiro de Engenharia Química. https://doi.org/ 10.5151/cobeq2018-PT.0441.
Da Silva, J. P. S., Barral, A. V. S., Azevedo, L. E. C., Oliveira, T. S., de Sousa, A. A. O., Nobre, J. R. C., ... & Sousa, V. C. (2021). Carvão ativado oriundo do mesocarpo do fruto da castanha de caju (Anacardium ccidentale) na remoção de corante em meio aquoso. Research, Society and Development, 10(3), 21710313221-21710313221. https://doi.org/10.33448/rsd-v10i3.13221.
Da Silva, W. L. L., & Simoni, J. D. A. (2018). Estudo termodinâmico da adsorção de cobre (II) em montmorilonita organicamente modificada. Cerâmica, 64, 403-412. https://doi.org/10.1590/0366-69132018643712395.
Shooto, N. D., Thabede, P. M., Bhila, B., Moloto, H., & Naidoo, E. B. (2020). Lead ions and methylene blue dye removal from aqueous solution by mucuna beans (velvet beans) adsorbents. Journal of Environmental Chemical Engineering, 8(2), 103557. https://doi.org/10.1016/j.jece.2019.103557.
Souza, N. B. A., Bitencourt, D. D. S. L., da Rosa, G. S., & de Almeida, A. R. F. (2021). Produção de carvão ativado a partir do resíduo da casca da acácia negra para adsorção de nimesulida. Revista da Jornada de Pós-Graduação e Pesquisa-Congrega Urcamp, 17, 173-186.
Somsesta, N., Sricharoenchaikul, V., & Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Materials Chemistry and Physics, 240, 122221. https://doi.org/10.1016/j.matchemphys.2019.122221.
Stavrinou, A., Aggelopoulos, C. A., & Tsakiroglou, C. D. (2018). Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. Journal of environmental chemical engineering, 6(6), 6958-6970. https://doi.org/10.1016/j.jece.2018.10.063.
Tan, X., Liu, Y., Gu, Y., Zeng, G., Wang, X., Hu, X., ... & Yang, Z. (2015). Immobilization of Cd (II) in acid soil amended with different biochars with a long term of incubation. Environmental Science and Pollution Research, 22(16), 12597-12604. https://doi.org/10.1007/s11356-015-4523-6.
Tien, C. (2018). Introduction to adsorption: Basics, analysis, and applications. Elsevier.
Tran, H. N., You, S. J., & Chao, H. P. (2016). Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 4(3), 2671-2682. https://doi.org/10.1016/j.jece.2016.05.009.
Van Dinter, R., Tekinerdogan, B., & Catal, C. (2021). Automation of systematic literature reviews: A systematic literature review. Information and Software Technology, 106589. https://doi.org/10.1016/j.infsof.2021.106589.
Varila, T., Bergna, D., Lahti, R., Romar, H., Hu, T., & Lassi, U. (2017). Activated carbon production from peat using ZnCl2: Characterization and applications. BioResources, 12(4), 8078-8092.
Yaashikaa, P. R., Kumar, P. S., Saravanan, A., & Vo, D. V. N. (2021). Advances in biosorbents for removal of environmental pollutants: A review on pretreatment, removal mechanism and future outlook. Journal of Hazardous Materials, 420, 126596. https://doi.org/10.1016/j.jhazmat.2021.126596.
Yamil, L. D. O., Georgin, J., Franco, D. S., Netto, M. S., Grassi, P., Piccilli, D. G., ... & Dotto, G. L. (2020). Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations. Advanced Powder Technology, 31(7), 2843-2852.https://doi.org/10.1016/j.apt.2020.05.004.
Zhang, W. Q., Sui, X., Yu, B., Shen, Y. Q., & Cong, H. L. (2019). Preparation of high specific surface area and high adsorptive activated carbon by KOH activation. Integrated ferroelectrics, 199(1), 22-29. https://doi.org/10.1080/10584587.2019.159259.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Ana Beatriz Malheiros Piquet; Marlice Cruz Martelli
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.