Microscopic analysis of the repair of critical bone defects in rabbits calvaria after the use of particulated autogenous bone or particulate autogenous bone associated with inorganic biomaterial

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.26709

Keywords:

Biocompatible Materials; Bone Regeneration; Bone Substitutes.

Abstract

The aim of this study was to evaluate, through microscopic analysis, the repair of critical defects in rabbit calvaria after the use of particulate autogenous bone or particulate autogenous bone associated with inorganic biomaterial. Six male albino rabbits, New Zealand, were used, in which 4 defects were performed in each calvaria and randomly divided into 4 equitable groups: Group I – performed bone defect; Group II – performed bone defect and filled with particulate autogenous bone; Group III – performed bone defect and filled with particulate inorganic material (Bio-Oss®, Geistlich from Brazil); Group IV – performed bone defect and filled with particulate autogenous bone associated with particulate inorganic material (Bio-Oss® - Geistlich from Brazil) with proportion being 20:80. The analyze time of the procedure was 60 days. The microscopic analyze allowed to conclude that the autogenous, the Bio-Oss® and the Bio-Oss® associated with autogenous bone groups showed a bone neoformation on the defects, characterizing the material osteoconductive. However, the complete defect closure occurred on the autogenous bone and the autogenous bone associated with the inorganic bone, showing that the presence of the autogenous bone improves the characteristics of the biomaterial. The use of inorganic bone associated with the autogenous bone allowed a complete bone neoformation of the critic defect in the calvaria of rabbits.

References

Açil, Y., Terheyden, H., Dunsche, A., Fleiner, B., & Jepsen, S. (2000). Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. Journal of biomedical materials research, 51(4), 703–710.

Araújo, M., Linder, E., Wennström, J., & Lindhe, J. (2008). The influence of Bio-Oss Collagen on healing of an extraction socket: an experimental study in the dog. The International journal of periodontics & restorative dentistry, 28(2), 123–135.

Barone, A., Crespi, R., Aldini, N. N., Fini, M., Giardino, R., & Covani, U. (2005). Maxillary sinus augmentation: histologic and histomorphometric analysis. The International journal of oral & maxillofacial implants, 20(4), 519–525.

Boyne, P. J., Marx, R. E., Nevins, M., Triplett, G., Lazaro, E., Lilly, L. C., Alder, M., & Nummikoski, P. (1997). A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. The International journal of periodontics & restorative dentistry, 17(1), 11–25.

Carlisle, P. L., Guda, T., Silliman, D. T., Hale, R. G., & Brown Baer, P. R. (2019). Are critical size bone notch defects possible in the rabbit mandible?. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 45(2), 97–107.

Crespi, R., Vinci, R., Capparè, P., Gherlone, E., & Romanos, G. E. (2007). Calvarial versus iliac crest for autologous bone graft material for a sinus lift procedure: a histomorphometric study. The International journal of oral & maxillofacial implants, 22(4), 527–532.

Dahlin, C., Sandberg, E., Alberius, P., & Linde, A. (1994). Restoration of mandibular nonunion bone defects. An experimental study in rats using an osteopromotive membrane method. International journal of oral and maxillofacial surgery, 23(4), 237–242.

Delgado-Ruiz, R. A., Calvo-Guirado, J. L., & Romanos, G. E. (2015). Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines. Clinical oral implants research, 26(8), 915–930.

García-Gareta, E., Coathup, M. J., & Blunn, G. W. (2015). Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 81, 112–121.

Gokhale, S. T., & Dwarakanath, C. D. (2012). The use of a natural osteoconductive porous bone mineral (Bio-Oss™) in infrabony periodontal defects. Journal of Indian Society of Periodontology, 16(2), 247–252.

Götz, C., Warnke, P. H., & Kolk, A. (2015). Current and future options of regeneration methods and reconstructive surgery of the facial skeleton. Oral surgery, oral medicine, oral pathology and oral radiology, 120(3), 315–323.

Hallman, M., Sennerby, L., & Lundgren, S. (2002). A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. The International journal of oral & maxillofacial implants, 17(5), 635–643.

Handschel, J., Berr, K., Depprich, R., Naujoks, C., Kübler, N. R., Meyer, U., Ommerborn, M., & Lammers, L. (2009). Compatibility of embryonic stem cells with biomaterials. Journal of biomaterials applications, 23(6), 549–560.

Iezzi, G., Scarano, A., Mangano, C., Cirotti, B., & Piattelli, A. (2008). Histologic results from a human implant retrieved due to fracture 5 years after insertion in a sinus augmented with anorganic bovine bone. Journal of periodontology, 79(1), 192–198.

Jensen, S. S., Broggini, N., Weibrich, G., Hjôrting-Hansen, E., Schenk, R., & Buser, D. (2005). Bone regeneration in standardized bone defects with autografts or bone substitutes in combination with platelet concentrate: a histologic and histomorphometric study in the mandibles of minipigs. The International journal of oral & maxillofacial implants, 20(5), 703–712.

Kim, C., Lee, J. W., Heo, J. H., Park, C., Kim, D. H., Yi, G. S., Kang, H. C., Jung, H. S., Shin, H., & Lee, J. H. (2022). Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration. Biomaterials research, 26(1), 7.

Li, Y., Chen, S. K., Li, L., Qin, L., Wang, X. L., & Lai, Y. X. (2015). Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of orthopaedic translation, 3(3), 95–104.

Liu, W., Du, B., Tan, S., Wang, Q., Li, Y., & Zhou, L. (2020). Vertical Guided Bone Regeneration in the Rabbit Calvarium Using Porous Nanohydroxyapatite Block Grafts Coated with rhVEGF165 and Cortical Perforation. International journal of nanomedicine, 15, 10059–10073.

Lundgren, S., Moy, P., Johansson, C., & Nilsson, H. (1996). Augmentation of the maxillary sinus floor with particulated mandible: a histologic and histomorphometric study. The International journal of oral & maxillofacial implants, 11(6), 760–766.

Marzola, C.; Pastori, C.M. Enxertos em reconstruções de maxilas atróficas. Revista Eletrônica da Academia Tiradentes de Odontologia, v. 6, n. 2, p. 298-309, 2006.

Noelken, R., Pausch, T., Wagner, W., & Al-Nawas, B. (2020). Peri-implant defect grafting with autogenous bone or bone graft material in immediate implant placement in molar extraction sites-1- to 3-year results of a prospective randomized study. Clinical oral implants research, 31(11), 1138–1148.

Norton, M. R., Odell, E. W., Thompson, I. D., & Cook, R. J. (2003). Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clinical oral implants research, 14(6), 775–783.

Pallesen, L., Schou, S., Aaboe, M., Hjørting-Hansen, E., Nattestad, A., & Melsen, F. (2002). Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. The International journal of oral & maxillofacial implants, 17(4), 498–506.

Porto, G. G., Vasconcelos, B. C., Andrade, E. S., Carneiro, S. C., & Frota, M. S. (2012). Is a 5 mm rat calvarium defect really critical?. Acta cirurgica brasileira, 27(11), 757–760.

Saulacic, N., Fujioka-Kobayashi, M., Kimura, Y., Bracher, A. I., Zihlmann, C., & Lang, N. P. (2021). The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. Journal of materials science. Materials in medicine, 32(1), 14.

Sohn, H. S., & Oh, J. K. (2019). Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials research, 23, 9.

Scarano, A., Degidi, M., Iezzi, G., Pecora, G., Piattelli, M., Orsini, G., Caputi, S., Perrotti, V., Mangano, C., & Piattelli, A. (2006). Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant dentistry, 15(2), 197–207.

Tovar, N., Jimbo, R., Gangolli, R., Perez, L., Manne, L., Yoo, D., Lorenzoni, F., Witek, L., & Coelho, P. G. (2014). Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study. International journal of oral and maxillofacial surgery, 43(2), 251–260.

Traini, T., Degidi, M., Sammons, R., Stanley, P., & Piattelli, A. (2008). Histologic and elemental microanalytical study of anorganic bovine bone substitution following sinus floor augmentation in humans. Journal of periodontology, 79(7), 1232–1240.

Vajgel, A., Mardas, N., Farias, B. C., Petrie, A., Cimões, R., & Donos, N. (2014). A systematic review on the critical size defect model. Clinical oral implants research, 25(8), 879–893.

Xuan, F., Lee, C. U., Son, J. S., Jeong, S. M., & Choi, B. H. (2014). A comparative study of the regenerative effect of sinus bone grafting with platelet-rich fibrin-mixed Bio-Oss® and commercial fibrin-mixed Bio-Oss®: an experimental study. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 42(4), e47–e50.

Downloads

Published

15/04/2022

How to Cite

ANDRÉ, S. B.; TAVARES, P. M. H.; SILVA, M. P. da; JESUS, L. K. de; HADAD, H.; BIZELLI, V. F.; PONZONI, D.; BASSI, A. P. F.; SOUZA, F. Ávila; CARVALHO, P. S. P. de. Microscopic analysis of the repair of critical bone defects in rabbits calvaria after the use of particulated autogenous bone or particulate autogenous bone associated with inorganic biomaterial. Research, Society and Development, [S. l.], v. 11, n. 5, p. e55211526709, 2022. DOI: 10.33448/rsd-v11i5.26709. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26709. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences