Análisis microscópico de la reparación de defectos óseos críticos en conejos de calvaria tras el uso de hueso autógeno particulado o hueso autógeno particulado asociado con biomaterial inorgánico

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i5.26709

Palabras clave:

Materiales Biocompatibles; Regeneración Ósea; Sustitutos de Huesos.

Resumen

Este estudio tuvo como objetivo evaluar mediante análisis microscópico la reparación de defectos óseos críticos en la calva de conejo después de utilizar hueso autógeno particulado o hueso autógeno particulado asociado con biomaterial inorgánico. Se utilizaron seis conejos machos albinos, Nueva Zelanda, en los cuales se realizaron 4 defectos en cada calvaria y se dividieron aleatoriamente en 4 grupos equitativos: Grupo I - defecto óseo y relleno de coágulo, Grupo II - defecto óseo y relleno óseo de partículas autógenas, Grupo III - defecto óseo realizado y su relleno con (BioOss®, Geistlich do Brasil), Grupo IV - defecto óseo y su relleno con hueso autógeno particulado asociado con material inorgánico particulado (BioOss®-Geistlich do Brasil) en una proporción de 20:80. El tiempo de análisis para este proceso de reparación fue de 60 días. El análisis microscópico mostró que tanto el grupo autógeno como el grupo Bio-Oss® y el grupo Bio-Oss® asociado a hueso autógeno presentaron una neoformación ósea en los defectos que caracterizan la osteoconducción de los materiales. Sin embargo, el cierre completo de los defectos se produjo en el grupo de hueso autógeno y hueso autógeno asociado a hueso inorgánico, demostrando que la presencia de hueso autógeno mejora las características del biomaterial. El uso de hueso inorgánico asociado con hueso autógeno permitió una neoformación ósea completa del defecto crítico en la calva del conejo.

Citas

Açil, Y., Terheyden, H., Dunsche, A., Fleiner, B., & Jepsen, S. (2000). Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. Journal of biomedical materials research, 51(4), 703–710.

Araújo, M., Linder, E., Wennström, J., & Lindhe, J. (2008). The influence of Bio-Oss Collagen on healing of an extraction socket: an experimental study in the dog. The International journal of periodontics & restorative dentistry, 28(2), 123–135.

Barone, A., Crespi, R., Aldini, N. N., Fini, M., Giardino, R., & Covani, U. (2005). Maxillary sinus augmentation: histologic and histomorphometric analysis. The International journal of oral & maxillofacial implants, 20(4), 519–525.

Boyne, P. J., Marx, R. E., Nevins, M., Triplett, G., Lazaro, E., Lilly, L. C., Alder, M., & Nummikoski, P. (1997). A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. The International journal of periodontics & restorative dentistry, 17(1), 11–25.

Carlisle, P. L., Guda, T., Silliman, D. T., Hale, R. G., & Brown Baer, P. R. (2019). Are critical size bone notch defects possible in the rabbit mandible?. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 45(2), 97–107.

Crespi, R., Vinci, R., Capparè, P., Gherlone, E., & Romanos, G. E. (2007). Calvarial versus iliac crest for autologous bone graft material for a sinus lift procedure: a histomorphometric study. The International journal of oral & maxillofacial implants, 22(4), 527–532.

Dahlin, C., Sandberg, E., Alberius, P., & Linde, A. (1994). Restoration of mandibular nonunion bone defects. An experimental study in rats using an osteopromotive membrane method. International journal of oral and maxillofacial surgery, 23(4), 237–242.

Delgado-Ruiz, R. A., Calvo-Guirado, J. L., & Romanos, G. E. (2015). Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines. Clinical oral implants research, 26(8), 915–930.

García-Gareta, E., Coathup, M. J., & Blunn, G. W. (2015). Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 81, 112–121.

Gokhale, S. T., & Dwarakanath, C. D. (2012). The use of a natural osteoconductive porous bone mineral (Bio-Oss™) in infrabony periodontal defects. Journal of Indian Society of Periodontology, 16(2), 247–252.

Götz, C., Warnke, P. H., & Kolk, A. (2015). Current and future options of regeneration methods and reconstructive surgery of the facial skeleton. Oral surgery, oral medicine, oral pathology and oral radiology, 120(3), 315–323.

Hallman, M., Sennerby, L., & Lundgren, S. (2002). A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. The International journal of oral & maxillofacial implants, 17(5), 635–643.

Handschel, J., Berr, K., Depprich, R., Naujoks, C., Kübler, N. R., Meyer, U., Ommerborn, M., & Lammers, L. (2009). Compatibility of embryonic stem cells with biomaterials. Journal of biomaterials applications, 23(6), 549–560.

Iezzi, G., Scarano, A., Mangano, C., Cirotti, B., & Piattelli, A. (2008). Histologic results from a human implant retrieved due to fracture 5 years after insertion in a sinus augmented with anorganic bovine bone. Journal of periodontology, 79(1), 192–198.

Jensen, S. S., Broggini, N., Weibrich, G., Hjôrting-Hansen, E., Schenk, R., & Buser, D. (2005). Bone regeneration in standardized bone defects with autografts or bone substitutes in combination with platelet concentrate: a histologic and histomorphometric study in the mandibles of minipigs. The International journal of oral & maxillofacial implants, 20(5), 703–712.

Kim, C., Lee, J. W., Heo, J. H., Park, C., Kim, D. H., Yi, G. S., Kang, H. C., Jung, H. S., Shin, H., & Lee, J. H. (2022). Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration. Biomaterials research, 26(1), 7.

Li, Y., Chen, S. K., Li, L., Qin, L., Wang, X. L., & Lai, Y. X. (2015). Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of orthopaedic translation, 3(3), 95–104.

Liu, W., Du, B., Tan, S., Wang, Q., Li, Y., & Zhou, L. (2020). Vertical Guided Bone Regeneration in the Rabbit Calvarium Using Porous Nanohydroxyapatite Block Grafts Coated with rhVEGF165 and Cortical Perforation. International journal of nanomedicine, 15, 10059–10073.

Lundgren, S., Moy, P., Johansson, C., & Nilsson, H. (1996). Augmentation of the maxillary sinus floor with particulated mandible: a histologic and histomorphometric study. The International journal of oral & maxillofacial implants, 11(6), 760–766.

Marzola, C.; Pastori, C.M. Enxertos em reconstruções de maxilas atróficas. Revista Eletrônica da Academia Tiradentes de Odontologia, v. 6, n. 2, p. 298-309, 2006.

Noelken, R., Pausch, T., Wagner, W., & Al-Nawas, B. (2020). Peri-implant defect grafting with autogenous bone or bone graft material in immediate implant placement in molar extraction sites-1- to 3-year results of a prospective randomized study. Clinical oral implants research, 31(11), 1138–1148.

Norton, M. R., Odell, E. W., Thompson, I. D., & Cook, R. J. (2003). Efficacy of bovine bone mineral for alveolar augmentation: a human histologic study. Clinical oral implants research, 14(6), 775–783.

Pallesen, L., Schou, S., Aaboe, M., Hjørting-Hansen, E., Nattestad, A., & Melsen, F. (2002). Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. The International journal of oral & maxillofacial implants, 17(4), 498–506.

Porto, G. G., Vasconcelos, B. C., Andrade, E. S., Carneiro, S. C., & Frota, M. S. (2012). Is a 5 mm rat calvarium defect really critical?. Acta cirurgica brasileira, 27(11), 757–760.

Saulacic, N., Fujioka-Kobayashi, M., Kimura, Y., Bracher, A. I., Zihlmann, C., & Lang, N. P. (2021). The effect of synthetic bone graft substitutes on bone formation in rabbit calvarial defects. Journal of materials science. Materials in medicine, 32(1), 14.

Sohn, H. S., & Oh, J. K. (2019). Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomaterials research, 23, 9.

Scarano, A., Degidi, M., Iezzi, G., Pecora, G., Piattelli, M., Orsini, G., Caputi, S., Perrotti, V., Mangano, C., & Piattelli, A. (2006). Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant dentistry, 15(2), 197–207.

Tovar, N., Jimbo, R., Gangolli, R., Perez, L., Manne, L., Yoo, D., Lorenzoni, F., Witek, L., & Coelho, P. G. (2014). Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study. International journal of oral and maxillofacial surgery, 43(2), 251–260.

Traini, T., Degidi, M., Sammons, R., Stanley, P., & Piattelli, A. (2008). Histologic and elemental microanalytical study of anorganic bovine bone substitution following sinus floor augmentation in humans. Journal of periodontology, 79(7), 1232–1240.

Vajgel, A., Mardas, N., Farias, B. C., Petrie, A., Cimões, R., & Donos, N. (2014). A systematic review on the critical size defect model. Clinical oral implants research, 25(8), 879–893.

Xuan, F., Lee, C. U., Son, J. S., Jeong, S. M., & Choi, B. H. (2014). A comparative study of the regenerative effect of sinus bone grafting with platelet-rich fibrin-mixed Bio-Oss® and commercial fibrin-mixed Bio-Oss®: an experimental study. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery, 42(4), e47–e50.

Descargas

Publicado

15/04/2022

Cómo citar

ANDRÉ, S. B.; TAVARES, P. M. H.; SILVA, M. P. da; JESUS, L. K. de; HADAD, H.; BIZELLI, V. F.; PONZONI, D.; BASSI, A. P. F.; SOUZA, F. Ávila; CARVALHO, P. S. P. de. Análisis microscópico de la reparación de defectos óseos críticos en conejos de calvaria tras el uso de hueso autógeno particulado o hueso autógeno particulado asociado con biomaterial inorgánico. Research, Society and Development, [S. l.], v. 11, n. 5, p. e55211526709, 2022. DOI: 10.33448/rsd-v11i5.26709. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26709. Acesso em: 7 jul. 2024.

Número

Sección

Ciencias de la salud