Essential oils of Lippia gracilis and Lippia sidoides chemotypes and their major compounds carvacrol and thymol: nanoemulsions and antifungal activity against Lasiodiplodia theobromae

Authors

DOI:

https://doi.org/10.33448/rsd-v11i3.26715

Keywords:

Verbenaceae; Germplasm; Volatile oil; Phytopathogens; Emulsion.

Abstract

The aim of this work was to evaluate the antifungal activity of essential oils (EOs) of Lippia gracilis and Lippia sidoides accessions, their major compounds and nanoemulsions. Nanoemulsions with 18% of EO or major compound were produced by spontaneous emulsification method. The EO of two L. gracilis accessions (LGRA-106 and LGRA-109) and two L. sidoides accessions (LSID-102 and LSID-104) were extracted by hydrodistillation and the major compounds thymol and carvacrol were purchased commercially. Antifungal activity was tested against Lasiodiplodia theobromae by calculating the percentage of inhibition of mycelial growth caused by different concentrations (0.1, 0.5, 1.0, 5.0, and 10.0 mL.L-1), in relation to the control. The EOs and their respective nanoemulsions presented as major compounds thymol (LGRA-106: 61.84% and Nano-106: 63.43%; LSID-102: 64.07% and Nano-102: 83.03%) or carvacrol (LGRA-109: 54.56% and Nano-109: 45.63%; LSID-104: 69.06% and Nano-104: 38.66%). Nano-104 presented 35.91% of an unidentified compound. The fungicidal activity of the EOs was similar to that of the major compounds, with a minimum fungicidal concentration of 1.0 mL.L-1 for LGRA-106, LSID-102 as well as for thymol, and 0.5 mL.L-1 for LGRA-109, LSID-104 as well as for carvacrol. The nanoemulsions were only able to reduce the mycelial growth of the fungus except for Nano-104 that exhibited fungicidal activity at the concentration of 10 ml.L-1. It was possible to observe that the EOs exhibited greater toxicity against L. theobromae than the nanoemulsions. These results can help in the development of products for the control of this important phytopathogen.

References

Adams, R. P. (2007). Identication of Essential Oil Components by Gas Chromatography/Mass Spectrometry. (3a ed.), Allured Publ. Corp., Carol Stream.

Alves, M. F., Nizio, D. A. C., Sampaio, T. S., Nascimento-Junior, A. F., Brito, F. A., Melo, J.O., Arrigoni-Blank, M. F., Gagliardi, P. R., Machado, S. M. F. & Blank, A. F. (2016). Myrcia lundiana Kiaersk native populations have different essential oil composition and antifungal activity against Lasiodiplodia theobromae. Industrial Crops and Products, 85, 266–273. http://dx.doi.org/10.1016/j.indcrop.2016.03.039

Araújo, A. A. S., Teles, T. V., Bonfim, R. R., Alves, P. B., Blank, A. F., Jesus, H. C. R.; Quintans Júnior, L. J., Serafini, M. R. & Bonjardim, L. R. (2010). Composition and evaluation of the lethality of Lippia gracilis essential oil to adults of Biomphalaria glabrata and larvae of Artemia salina. African Journal of Biotechnology, 9(51), 8800-8804. https://doi.org/10.5897/AJB10.113

Asbahani, A., Miladi, K., Badri, W., Sala, M., Ait Addi, E. H., Casabianca, H., El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F. N. R. & Elaissari, A. (2015). Essential oils: from extraction to encapsulation. International Journal of Pharmaceutics, 483, 220-243. https://doi.org/10.1016/j.ijpharm.2014.12.069

Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C. & Rocha-Filho, P. A. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9(44), 1-9. https://doi.org/10.1186/1477-3155-9-44

Bouchemal, K., Briançon, S., Perrier, E. & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. International Journal of Pharmaceutics, 280(1-2), 241-251. https://doi.org/10.1016/j.ijpharm.2004.05.016

Cadena, M. B., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E. & Thompson, I. P. (2018). Species-specific antimicrobial activity of essential oils and enhancement by enc’apsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582–590. https://doi.org/10.1016/j.indcrop.2018.05.081

Calo, J. R., Crandall, P. G., O’Bryan, C. A. & Ricke, S. (2015). Essential oils as antimicrobials in food systems – A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040

Cavalcanti, S. C. H., Niculau, E. S., Blank, A. F., Câmara, C. A. G., Araújo, I. N. & Alves, P. B. (2010). Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technology, 101(2), 829-832. https://doi.org/10.1016/j.biortech.2009.08.053

Cruz, E. M. O., Costa-Júnior, L. M., Pinto, J. A. O., Santos, D. A., Araújo, S. A., Arrigoni-Blank, M. F., Bacci, L., Alves, P. B., Cavalcanti, S. C. H. & Blank, A. F. (2013). Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 195(1-2), 198-202. https://doi.org/10.1016/j.vetpar.2012.12.046

Danielli, L. J., Reis, M., Bianchini, M., Graziela, S., Bordignon, S. A. L., Guerreiro, I. K., Fuentefria, A. & Apel, M. A. (2013). Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial Crops and Products, 50, 23-28.

https://doi.org/10.1016/j.indcrop.2013.07.027

Donsi, F., Annunziata, M. M., Sessa, M. & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT- Food Science and Technology, 44(9), 1908-1914. https://doi.org/10.1016/j.lwt.2011.03.003

Duarte, J. L., Amado, J. R. R., Oliveira, A. E. M. F. M., Cruz, R. A. S., Ferreira, A. M., Souto, R. N. P., Falcão, D. Q., Carvalho, J. C. T. & Fernandes, C. P. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia, 25(2), 189–192.

https://doi.org/10.1016/j.bjp.2015.02.010

Ehlert, P. A. D., Blank, A. F., Arrigoni-Blank, M. F., Paula, J. W. A., Campos, D. A. & Alviano, C. S. (2006). Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Revista Brasileira de Plantas Medicinais, 8(2), 79-80.

Fernandes, P. D., Guilhon, C. C., Raymundo, L. J. R. P., Alviano, D. S., Blank, A. F., Arrigoni-Blank, M. F., Matheus, M. E. & Cavalcanti, S. C. H. (2011). Characterisation of the anti-inflammatory and antinociceptive activities and the action of Lippia gracilis essential oil. Journal of Ethnopharmacology, 135(2), 406-413. https://doi.org/10.1016/j.jep.2011.03.032

Flores, F. C., Ribeiro, R. F., Ourique, A. F., Rolim, C. M. B. & Silva, C. B. (2011). Nanostructured systems containing an essential oil: protection against volatilization. Química Nova, 34(6), 968-972. https://doi.org/10.1590/S0100-40422011000600010

França, K. R. S., Alves, F. M. F., Lima, T. S., Xavier, A. L. S., Azevedo, P. T. M., Araújo, I. G., Nóbrega, L. P., Paiva, Y. F., Barboza, H. S., Mendonça-Júnior, A. F., Rodrigues, A. P. M. S. & Cardoso, T. A. L. (2020). In vitro fungitoxic potential of Lippia gracilis (Schauer) essential oil against phytopathogens. Australian Journal of Crop Science, 14(4), 667-674. https://doi.org/10.21475/ajcs.20.14.04.p2310

Franco, C. S., Ribeiro, A. F., Carvalho, N. C., Monteiro, O. S., Silva, J. K. R., Andrade, E. H. A. & Maia, J. G. S. (2014). Composition and antioxidant and antifungal activities of the essential oil from Lippia gracilis Schauer. African Journal of Biotechnology, 13(30), 3107-3113. https://doi.org/10.5897/AJB2012.2941

He, R., Zhao, L., Fu, R., Chen, Z. C., Lin, X. C. & Yang, Y. (2018). Resistance of Botryodiplodia theobromae caused mango stem end rot to pyraclostrobin in Hainan. Chin. Plant protection, 44, 188–193.

Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, L., Khan, L. A. & Manzoor, N. (2010). Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Research in Microbiology, 161(10), 816-823. https://doi.org/10.1016/j.resmic.2010.09.008

Lorenzi, H. & Matos, F. J. A. (2002). Plantas medicinais no Brasil: nativas e exóticas, Instituto Plantarum.

Lovelyn, C. & Attama, A. A. (2011). Current state of nanoemulsions in drug delivery. Journal of Biomaterials and Nanobiotechnology, 2(5), 626-639. https://doi.org/10.4236/jbnb.2011.225075

Marques, R. P., Monteiro, A. C. & Pereira, G. T. (2004). Crescimento, esporulação e viabilidade de fungos entomopatogênicos em meios contendo diferentes concentrações de óleo de nim (Azadirachta indica). Ciência Rural, 34(6), 1675-1680.

Marreto, R. N., Almeida, E. E. C. V., Alves, P. B., Niculau, E. S., Nunes, R. S., Matos, C. R. S. & Araujo, A. A. S. (2008). Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropil-b-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochimica Acta, 475(1-2), 53-58. https://doi.org/10.1016/j.tca.2008.06.015

Melo, J. O., Bitencourt, T. A., Fachin, A. L., Cruz, E. M. O., Jesus, H. C. R., Alves, P. B., Arrigoni-Blank, M. F., Franca, S. C., Beleboni, R. O., Fernandes, R. P. M., Blank, A. F. & Scher, R. (2013). Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Tropica, 128(1), 110-115. https://doi.org/10.1016/j.actatropica.2013.06.024

Montanari, R. M., Barbosa, L. C. A., Demuner, A. J., Silva, C. J., Andrade, N. J., Ismail, F. M. D. & Barbosa, M. C. A. (2012). Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules, 17(8), 9728-9740. https://doi.org/10.3390/molecules17089728

Ngan, L. C., Basri, M., Tripathy, M., Karjiban, R. A. & Abdul-Malek, E. (2015). Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. European Journal of Pharmaceutical Sciences, 70, 22-28. https://doi.org/10.1016/j.ejps.2015.01.006

Pascual, M. E., Slowing, K., Carretero, E., Mata, D. S. & Villar, A. (2001). Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology, 76(3), 201-214. https://doi.org/10.1016/s0378-8741(01)00234-3

Peixinho, G. S., Ribeiro, V. G. & Amorin, E. P. R. (2017). Ação do óleo essencial de menta (Mentha arvensis) sobre o patógeno Lasiodiplodia theobromae em cachos de videira cv. Itália. Summa Phytopathologica, 43(1), 32-35. https://doi.org/10.1590/0100-5405/2204

Pereira, A. V. S., Martins, R. B., Michereff, S. J., Silva, M. B. & Câmara, M. P. S. (2012). Sensitivity of Lasiodiplodia theobromae from Brazilian papaya orchards to MBC 2 and DMI fungicides. European Journal Plant Pathology, 132, 489-498. https://doi.org/10.1007/s10658-011-9891-2

Pina-Vaz, C., Rodrigues, A. G., Pinto, E., Costa-De-Oliveira, S., Tavares, C., Salgueiro, L., Cavaleiro, Gonçalves, C., M. J. & Martinez-De-Oliveira, J. (2004). Antifungal activity of Thymus oils and their major compounds. Journal of the European Academy of Dermatology and Venereology, 18(1), 73-78. https://doi.org/10.1111/j.1468-3083.2004.00886.x

Punithalingam, E. (1980). Plant diseases attributed to Botryodiplodia theobromae, 1th ed. Cramer.

Sansukcharearnpon, A., Wanichwecharungrung, S., Leepipatpaiboon, N., Kerdcharoen, T. & Arayachukeat, S. (2010). High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. International Journal of Pharmaceutics, 391(1-2), 267- 273. https://doi.org/10.1016/j.ijpharm.2010.02.020

Santos, I. T. B. F., Santos, T. S., Silva, F. L. S., Gagliardi, P. R., Oliveira, L. F. G. & Blank, A. F. (2014). Óleo essencial de Schinus terebinthifolius Raddi como controle alternativo de Colletothrichum gloeosporioides e Lasiodiplodia theobromae, fungos fitopatogênicos de pós colheita. Revista GEINTEC, 4(4): 1409 1417. https://doi.org/10.47059/geintecmagazine.v4i4.567

Selvaraj, M., Pandurangan, A., Seshadri, K. S., Sinha, P. K., Krishnasamy, V. & Lal, K. B. (2002). Comparison of mesorporous A1-MCM-41 molecular sieves in the production of ρ-cymene for isopropylation of toluene. Journal of Molecular Catalysis A: Chemical, 186(1-2), 173-186. https://doi.org/10.1016/S1381-1169(02)00134-6

Shang, L., Yang, L., Seiter, J., Heinle, M., Brenner-Weiss, G., Gerthsen, D. & Nienhaus, G.U. (2014). Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Advanced Materials Interfaces, 1(2), 1-10. https://doi.org/10.1002/admi.201300079

Sharma, N. & Tripathi, A. (2008). Integrated management of postharvest Fusarium rot of gladiolus corms using hot water, UV-C and Hyptis suaveolens (L.) Poit. essential oil. Postharvest Biology and Technology, 47(2), 246-254. https://doi.org/10.1016/j.postharvbio.2007.07.001

Slippers, B. & Wingfield, M. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. https://doi.org/10.1016/j.fbr.2007.06.002

Stević, T., Berić, T., Šavikin, K., Soković, M., Gođevac, D., Dimkić, I. & Stanković, S. (2014). Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Industrial Crops and Products, 55, 116-122. https://doi.org/10.1016/j.indcrop.2014.02.011

Van Den Dool, H. & Kratz, J. D. J. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X

Veras, H. N. H., Rodrigues, F. F. G., Botelho, M. A., Menezes, I. R. A., Coutinho, M. & Costa, J. G. M. (2017). Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arabian Journal of Chemistry, 10(2), 2790-2795. http://dx.doi.org/10.1016/j.arabjc.2013.10.030.

Yang, Y., Dong, G., Wang, M., Xian, X., Wang, J. & Liang, X. (2021). Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection, 145, 1-8. https://doi.org/10.1016/j.cropro.2021.105611

Yang, Y., Zeng, G. D., Zhang, Y., Xue, R. & Hu, Y. J. (2019). Molecular and Biochemical Characterization of Carbendazim-Resistant Botryodiplodia theobromae Field Isolates. Plant Disease, 103, 2076-2082. https://doi.org/10.1094/PDIS-01-19-0148-RE

Downloads

Published

26/02/2022

How to Cite

MELO, J. O. de; BLANK, A. F.; NUNES, R. de S.; ALVES, P. B.; ARRIGONI-BLANK, M. de F.; GAGLIARDI, P. R.; NASCIMENTO-JÚNIOR, A. F. do; SAMPAIO, T. S.; LIMA, A. D.; NIZIO, D. A. de C. Essential oils of Lippia gracilis and Lippia sidoides chemotypes and their major compounds carvacrol and thymol: nanoemulsions and antifungal activity against Lasiodiplodia theobromae . Research, Society and Development, [S. l.], v. 11, n. 3, p. e36511326715, 2022. DOI: 10.33448/rsd-v11i3.26715. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/26715. Acesso em: 25 dec. 2024.

Issue

Section

Agrarian and Biological Sciences