Essential oils of Lippia gracilis and Lippia sidoides chemotypes and their major compounds carvacrol and thymol: nanoemulsions and antifungal activity against Lasiodiplodia theobromae
DOI:
https://doi.org/10.33448/rsd-v11i3.26715Keywords:
Verbenaceae; Germplasm; Volatile oil; Phytopathogens; Emulsion.Abstract
The aim of this work was to evaluate the antifungal activity of essential oils (EOs) of Lippia gracilis and Lippia sidoides accessions, their major compounds and nanoemulsions. Nanoemulsions with 18% of EO or major compound were produced by spontaneous emulsification method. The EO of two L. gracilis accessions (LGRA-106 and LGRA-109) and two L. sidoides accessions (LSID-102 and LSID-104) were extracted by hydrodistillation and the major compounds thymol and carvacrol were purchased commercially. Antifungal activity was tested against Lasiodiplodia theobromae by calculating the percentage of inhibition of mycelial growth caused by different concentrations (0.1, 0.5, 1.0, 5.0, and 10.0 mL.L-1), in relation to the control. The EOs and their respective nanoemulsions presented as major compounds thymol (LGRA-106: 61.84% and Nano-106: 63.43%; LSID-102: 64.07% and Nano-102: 83.03%) or carvacrol (LGRA-109: 54.56% and Nano-109: 45.63%; LSID-104: 69.06% and Nano-104: 38.66%). Nano-104 presented 35.91% of an unidentified compound. The fungicidal activity of the EOs was similar to that of the major compounds, with a minimum fungicidal concentration of 1.0 mL.L-1 for LGRA-106, LSID-102 as well as for thymol, and 0.5 mL.L-1 for LGRA-109, LSID-104 as well as for carvacrol. The nanoemulsions were only able to reduce the mycelial growth of the fungus except for Nano-104 that exhibited fungicidal activity at the concentration of 10 ml.L-1. It was possible to observe that the EOs exhibited greater toxicity against L. theobromae than the nanoemulsions. These results can help in the development of products for the control of this important phytopathogen.
References
Adams, R. P. (2007). Identication of Essential Oil Components by Gas Chromatography/Mass Spectrometry. (3a ed.), Allured Publ. Corp., Carol Stream.
Alves, M. F., Nizio, D. A. C., Sampaio, T. S., Nascimento-Junior, A. F., Brito, F. A., Melo, J.O., Arrigoni-Blank, M. F., Gagliardi, P. R., Machado, S. M. F. & Blank, A. F. (2016). Myrcia lundiana Kiaersk native populations have different essential oil composition and antifungal activity against Lasiodiplodia theobromae. Industrial Crops and Products, 85, 266–273. http://dx.doi.org/10.1016/j.indcrop.2016.03.039
Araújo, A. A. S., Teles, T. V., Bonfim, R. R., Alves, P. B., Blank, A. F., Jesus, H. C. R.; Quintans Júnior, L. J., Serafini, M. R. & Bonjardim, L. R. (2010). Composition and evaluation of the lethality of Lippia gracilis essential oil to adults of Biomphalaria glabrata and larvae of Artemia salina. African Journal of Biotechnology, 9(51), 8800-8804. https://doi.org/10.5897/AJB10.113
Asbahani, A., Miladi, K., Badri, W., Sala, M., Ait Addi, E. H., Casabianca, H., El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F. N. R. & Elaissari, A. (2015). Essential oils: from extraction to encapsulation. International Journal of Pharmaceutics, 483, 220-243. https://doi.org/10.1016/j.ijpharm.2014.12.069
Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C. & Rocha-Filho, P. A. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9(44), 1-9. https://doi.org/10.1186/1477-3155-9-44
Bouchemal, K., Briançon, S., Perrier, E. & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. International Journal of Pharmaceutics, 280(1-2), 241-251. https://doi.org/10.1016/j.ijpharm.2004.05.016
Cadena, M. B., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E. & Thompson, I. P. (2018). Species-specific antimicrobial activity of essential oils and enhancement by enc’apsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582–590. https://doi.org/10.1016/j.indcrop.2018.05.081
Calo, J. R., Crandall, P. G., O’Bryan, C. A. & Ricke, S. (2015). Essential oils as antimicrobials in food systems – A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
Cavalcanti, S. C. H., Niculau, E. S., Blank, A. F., Câmara, C. A. G., Araújo, I. N. & Alves, P. B. (2010). Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technology, 101(2), 829-832. https://doi.org/10.1016/j.biortech.2009.08.053
Cruz, E. M. O., Costa-Júnior, L. M., Pinto, J. A. O., Santos, D. A., Araújo, S. A., Arrigoni-Blank, M. F., Bacci, L., Alves, P. B., Cavalcanti, S. C. H. & Blank, A. F. (2013). Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 195(1-2), 198-202. https://doi.org/10.1016/j.vetpar.2012.12.046
Danielli, L. J., Reis, M., Bianchini, M., Graziela, S., Bordignon, S. A. L., Guerreiro, I. K., Fuentefria, A. & Apel, M. A. (2013). Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial Crops and Products, 50, 23-28.
https://doi.org/10.1016/j.indcrop.2013.07.027
Donsi, F., Annunziata, M. M., Sessa, M. & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT- Food Science and Technology, 44(9), 1908-1914. https://doi.org/10.1016/j.lwt.2011.03.003
Duarte, J. L., Amado, J. R. R., Oliveira, A. E. M. F. M., Cruz, R. A. S., Ferreira, A. M., Souto, R. N. P., Falcão, D. Q., Carvalho, J. C. T. & Fernandes, C. P. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia, 25(2), 189–192.
https://doi.org/10.1016/j.bjp.2015.02.010
Ehlert, P. A. D., Blank, A. F., Arrigoni-Blank, M. F., Paula, J. W. A., Campos, D. A. & Alviano, C. S. (2006). Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Revista Brasileira de Plantas Medicinais, 8(2), 79-80.
Fernandes, P. D., Guilhon, C. C., Raymundo, L. J. R. P., Alviano, D. S., Blank, A. F., Arrigoni-Blank, M. F., Matheus, M. E. & Cavalcanti, S. C. H. (2011). Characterisation of the anti-inflammatory and antinociceptive activities and the action of Lippia gracilis essential oil. Journal of Ethnopharmacology, 135(2), 406-413. https://doi.org/10.1016/j.jep.2011.03.032
Flores, F. C., Ribeiro, R. F., Ourique, A. F., Rolim, C. M. B. & Silva, C. B. (2011). Nanostructured systems containing an essential oil: protection against volatilization. Química Nova, 34(6), 968-972. https://doi.org/10.1590/S0100-40422011000600010
França, K. R. S., Alves, F. M. F., Lima, T. S., Xavier, A. L. S., Azevedo, P. T. M., Araújo, I. G., Nóbrega, L. P., Paiva, Y. F., Barboza, H. S., Mendonça-Júnior, A. F., Rodrigues, A. P. M. S. & Cardoso, T. A. L. (2020). In vitro fungitoxic potential of Lippia gracilis (Schauer) essential oil against phytopathogens. Australian Journal of Crop Science, 14(4), 667-674. https://doi.org/10.21475/ajcs.20.14.04.p2310
Franco, C. S., Ribeiro, A. F., Carvalho, N. C., Monteiro, O. S., Silva, J. K. R., Andrade, E. H. A. & Maia, J. G. S. (2014). Composition and antioxidant and antifungal activities of the essential oil from Lippia gracilis Schauer. African Journal of Biotechnology, 13(30), 3107-3113. https://doi.org/10.5897/AJB2012.2941
He, R., Zhao, L., Fu, R., Chen, Z. C., Lin, X. C. & Yang, Y. (2018). Resistance of Botryodiplodia theobromae caused mango stem end rot to pyraclostrobin in Hainan. Chin. Plant protection, 44, 188–193.
Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, L., Khan, L. A. & Manzoor, N. (2010). Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Research in Microbiology, 161(10), 816-823. https://doi.org/10.1016/j.resmic.2010.09.008
Lorenzi, H. & Matos, F. J. A. (2002). Plantas medicinais no Brasil: nativas e exóticas, Instituto Plantarum.
Lovelyn, C. & Attama, A. A. (2011). Current state of nanoemulsions in drug delivery. Journal of Biomaterials and Nanobiotechnology, 2(5), 626-639. https://doi.org/10.4236/jbnb.2011.225075
Marques, R. P., Monteiro, A. C. & Pereira, G. T. (2004). Crescimento, esporulação e viabilidade de fungos entomopatogênicos em meios contendo diferentes concentrações de óleo de nim (Azadirachta indica). Ciência Rural, 34(6), 1675-1680.
Marreto, R. N., Almeida, E. E. C. V., Alves, P. B., Niculau, E. S., Nunes, R. S., Matos, C. R. S. & Araujo, A. A. S. (2008). Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropil-b-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochimica Acta, 475(1-2), 53-58. https://doi.org/10.1016/j.tca.2008.06.015
Melo, J. O., Bitencourt, T. A., Fachin, A. L., Cruz, E. M. O., Jesus, H. C. R., Alves, P. B., Arrigoni-Blank, M. F., Franca, S. C., Beleboni, R. O., Fernandes, R. P. M., Blank, A. F. & Scher, R. (2013). Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Tropica, 128(1), 110-115. https://doi.org/10.1016/j.actatropica.2013.06.024
Montanari, R. M., Barbosa, L. C. A., Demuner, A. J., Silva, C. J., Andrade, N. J., Ismail, F. M. D. & Barbosa, M. C. A. (2012). Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules, 17(8), 9728-9740. https://doi.org/10.3390/molecules17089728
Ngan, L. C., Basri, M., Tripathy, M., Karjiban, R. A. & Abdul-Malek, E. (2015). Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. European Journal of Pharmaceutical Sciences, 70, 22-28. https://doi.org/10.1016/j.ejps.2015.01.006
Pascual, M. E., Slowing, K., Carretero, E., Mata, D. S. & Villar, A. (2001). Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology, 76(3), 201-214. https://doi.org/10.1016/s0378-8741(01)00234-3
Peixinho, G. S., Ribeiro, V. G. & Amorin, E. P. R. (2017). Ação do óleo essencial de menta (Mentha arvensis) sobre o patógeno Lasiodiplodia theobromae em cachos de videira cv. Itália. Summa Phytopathologica, 43(1), 32-35. https://doi.org/10.1590/0100-5405/2204
Pereira, A. V. S., Martins, R. B., Michereff, S. J., Silva, M. B. & Câmara, M. P. S. (2012). Sensitivity of Lasiodiplodia theobromae from Brazilian papaya orchards to MBC 2 and DMI fungicides. European Journal Plant Pathology, 132, 489-498. https://doi.org/10.1007/s10658-011-9891-2
Pina-Vaz, C., Rodrigues, A. G., Pinto, E., Costa-De-Oliveira, S., Tavares, C., Salgueiro, L., Cavaleiro, Gonçalves, C., M. J. & Martinez-De-Oliveira, J. (2004). Antifungal activity of Thymus oils and their major compounds. Journal of the European Academy of Dermatology and Venereology, 18(1), 73-78. https://doi.org/10.1111/j.1468-3083.2004.00886.x
Punithalingam, E. (1980). Plant diseases attributed to Botryodiplodia theobromae, 1th ed. Cramer.
Sansukcharearnpon, A., Wanichwecharungrung, S., Leepipatpaiboon, N., Kerdcharoen, T. & Arayachukeat, S. (2010). High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. International Journal of Pharmaceutics, 391(1-2), 267- 273. https://doi.org/10.1016/j.ijpharm.2010.02.020
Santos, I. T. B. F., Santos, T. S., Silva, F. L. S., Gagliardi, P. R., Oliveira, L. F. G. & Blank, A. F. (2014). Óleo essencial de Schinus terebinthifolius Raddi como controle alternativo de Colletothrichum gloeosporioides e Lasiodiplodia theobromae, fungos fitopatogênicos de pós colheita. Revista GEINTEC, 4(4): 1409 1417. https://doi.org/10.47059/geintecmagazine.v4i4.567
Selvaraj, M., Pandurangan, A., Seshadri, K. S., Sinha, P. K., Krishnasamy, V. & Lal, K. B. (2002). Comparison of mesorporous A1-MCM-41 molecular sieves in the production of ρ-cymene for isopropylation of toluene. Journal of Molecular Catalysis A: Chemical, 186(1-2), 173-186. https://doi.org/10.1016/S1381-1169(02)00134-6
Shang, L., Yang, L., Seiter, J., Heinle, M., Brenner-Weiss, G., Gerthsen, D. & Nienhaus, G.U. (2014). Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Advanced Materials Interfaces, 1(2), 1-10. https://doi.org/10.1002/admi.201300079
Sharma, N. & Tripathi, A. (2008). Integrated management of postharvest Fusarium rot of gladiolus corms using hot water, UV-C and Hyptis suaveolens (L.) Poit. essential oil. Postharvest Biology and Technology, 47(2), 246-254. https://doi.org/10.1016/j.postharvbio.2007.07.001
Slippers, B. & Wingfield, M. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. https://doi.org/10.1016/j.fbr.2007.06.002
Stević, T., Berić, T., Šavikin, K., Soković, M., Gođevac, D., Dimkić, I. & Stanković, S. (2014). Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Industrial Crops and Products, 55, 116-122. https://doi.org/10.1016/j.indcrop.2014.02.011
Van Den Dool, H. & Kratz, J. D. J. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X
Veras, H. N. H., Rodrigues, F. F. G., Botelho, M. A., Menezes, I. R. A., Coutinho, M. & Costa, J. G. M. (2017). Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arabian Journal of Chemistry, 10(2), 2790-2795. http://dx.doi.org/10.1016/j.arabjc.2013.10.030.
Yang, Y., Dong, G., Wang, M., Xian, X., Wang, J. & Liang, X. (2021). Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection, 145, 1-8. https://doi.org/10.1016/j.cropro.2021.105611
Yang, Y., Zeng, G. D., Zhang, Y., Xue, R. & Hu, Y. J. (2019). Molecular and Biochemical Characterization of Carbendazim-Resistant Botryodiplodia theobromae Field Isolates. Plant Disease, 103, 2076-2082. https://doi.org/10.1094/PDIS-01-19-0148-RE
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Juliana Oliveira de Melo; Arie Fitzgerald Blank; Rogéria de Souza Nunes; Péricles Barreto Alves; Maria de Fátima Arrigoni-Blank; Paulo Roberto Gagliardi; Alberto Ferreira do Nascimento-Júnior; Taís Santos Sampaio; Alyne Dantas Lima; Daniela Aparecida de Castro Nizio
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.