Aceites esenciales de quimiotipos de Lippia gracilis y Lippia sidoides y sus principales compuestos carvacrol y timol: nanoemulsiones y actividad antifúngica contra Lasiodiplodia theobromae
DOI:
https://doi.org/10.33448/rsd-v11i3.26715Palabras clave:
Verbenaceae; Germoplasma; Aceite volátil; Fitopatógenos; Emulsión.Resumen
El objetivo de este trabajo fue evaluar la actividad antifúngica de los aceites esenciales (OE) de accesiones de Lippia gracilis y Lippia sidoides, sus principales compuestos y nanoemulsiones. Nanoemulsiones que contenían un 15% de OE o compuestos mayoritarios se obtuvieron por emulsificación espontánea. Los OE de dos accesos de L. gracilis (LGRA-106 eLGRA-109) y dos accesos de L. sidoides (LSID-102 y LSID-104) fueron extraídos por hidrodestilación y los compuestos mayoritarios timol y carvacrol fueron adquiridos comercialmente. La actividad antifúngica se probó contra Lasiodiplodia theobromae calculando el porcentaje de inhibición del crecimiento micelial causado por diferentes concentraciones (0.1; 0.5; 1.0; 5.0 y 10.0 mL.L-1) en relación con el control. Los OE y sus respectivas nanoemulsiones presentaron como compuestos principales el timol (LGRA-106: 61.84% y Nano-106: 63.43%; LSID-102: 64.07% y Nano-102: 83.03%) o carvacrol (LGRA-109: 54.56% y Nano-109: 45.63%; LSID-104: 69.06% y Nano-104: 38.66%). Nano-104 presentó el 35.91% de un compuesto no identificado. La actividad antifúngica de los OE fue similar a la de los compuestos mayoritarios, con una concentración mínima de fungicidas de 1.0 mL.L-1 para LGRA-106, LSID-102 así como para el timol, y 0.5 mL.L-1 para LGRA-109, LSID-104 así como para carvacrol. Se demostró que las nanoemulsiones solo podían reducir el crecimiento del hongo, a excepción de Nano-104 que exhibió actividad fungicida a la concentración de 10 ml.L-1. Al comparar la actividad antifúngica exhibida por los OE y sus respectivas nanoemulsiones, es posible observar que los OE exhibieron una mayor toxicidad contra L. theobromae. Estos resultados pueden ayudar en el desarrollo de productos para el control de este importante fitopatógeno.
Citas
Adams, R. P. (2007). Identication of Essential Oil Components by Gas Chromatography/Mass Spectrometry. (3a ed.), Allured Publ. Corp., Carol Stream.
Alves, M. F., Nizio, D. A. C., Sampaio, T. S., Nascimento-Junior, A. F., Brito, F. A., Melo, J.O., Arrigoni-Blank, M. F., Gagliardi, P. R., Machado, S. M. F. & Blank, A. F. (2016). Myrcia lundiana Kiaersk native populations have different essential oil composition and antifungal activity against Lasiodiplodia theobromae. Industrial Crops and Products, 85, 266–273. http://dx.doi.org/10.1016/j.indcrop.2016.03.039
Araújo, A. A. S., Teles, T. V., Bonfim, R. R., Alves, P. B., Blank, A. F., Jesus, H. C. R.; Quintans Júnior, L. J., Serafini, M. R. & Bonjardim, L. R. (2010). Composition and evaluation of the lethality of Lippia gracilis essential oil to adults of Biomphalaria glabrata and larvae of Artemia salina. African Journal of Biotechnology, 9(51), 8800-8804. https://doi.org/10.5897/AJB10.113
Asbahani, A., Miladi, K., Badri, W., Sala, M., Ait Addi, E. H., Casabianca, H., El Mousadik, A., Hartmann, D., Jilale, A., Renaud, F. N. R. & Elaissari, A. (2015). Essential oils: from extraction to encapsulation. International Journal of Pharmaceutics, 483, 220-243. https://doi.org/10.1016/j.ijpharm.2014.12.069
Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C. & Rocha-Filho, P. A. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9(44), 1-9. https://doi.org/10.1186/1477-3155-9-44
Bouchemal, K., Briançon, S., Perrier, E. & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. International Journal of Pharmaceutics, 280(1-2), 241-251. https://doi.org/10.1016/j.ijpharm.2004.05.016
Cadena, M. B., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E. & Thompson, I. P. (2018). Species-specific antimicrobial activity of essential oils and enhancement by enc’apsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582–590. https://doi.org/10.1016/j.indcrop.2018.05.081
Calo, J. R., Crandall, P. G., O’Bryan, C. A. & Ricke, S. (2015). Essential oils as antimicrobials in food systems – A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
Cavalcanti, S. C. H., Niculau, E. S., Blank, A. F., Câmara, C. A. G., Araújo, I. N. & Alves, P. B. (2010). Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technology, 101(2), 829-832. https://doi.org/10.1016/j.biortech.2009.08.053
Cruz, E. M. O., Costa-Júnior, L. M., Pinto, J. A. O., Santos, D. A., Araújo, S. A., Arrigoni-Blank, M. F., Bacci, L., Alves, P. B., Cavalcanti, S. C. H. & Blank, A. F. (2013). Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 195(1-2), 198-202. https://doi.org/10.1016/j.vetpar.2012.12.046
Danielli, L. J., Reis, M., Bianchini, M., Graziela, S., Bordignon, S. A. L., Guerreiro, I. K., Fuentefria, A. & Apel, M. A. (2013). Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial Crops and Products, 50, 23-28.
https://doi.org/10.1016/j.indcrop.2013.07.027
Donsi, F., Annunziata, M. M., Sessa, M. & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT- Food Science and Technology, 44(9), 1908-1914. https://doi.org/10.1016/j.lwt.2011.03.003
Duarte, J. L., Amado, J. R. R., Oliveira, A. E. M. F. M., Cruz, R. A. S., Ferreira, A. M., Souto, R. N. P., Falcão, D. Q., Carvalho, J. C. T. & Fernandes, C. P. (2015). Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia, 25(2), 189–192.
https://doi.org/10.1016/j.bjp.2015.02.010
Ehlert, P. A. D., Blank, A. F., Arrigoni-Blank, M. F., Paula, J. W. A., Campos, D. A. & Alviano, C. S. (2006). Tempo de hidrodestilação na extração de óleo essencial de sete espécies de plantas medicinais. Revista Brasileira de Plantas Medicinais, 8(2), 79-80.
Fernandes, P. D., Guilhon, C. C., Raymundo, L. J. R. P., Alviano, D. S., Blank, A. F., Arrigoni-Blank, M. F., Matheus, M. E. & Cavalcanti, S. C. H. (2011). Characterisation of the anti-inflammatory and antinociceptive activities and the action of Lippia gracilis essential oil. Journal of Ethnopharmacology, 135(2), 406-413. https://doi.org/10.1016/j.jep.2011.03.032
Flores, F. C., Ribeiro, R. F., Ourique, A. F., Rolim, C. M. B. & Silva, C. B. (2011). Nanostructured systems containing an essential oil: protection against volatilization. Química Nova, 34(6), 968-972. https://doi.org/10.1590/S0100-40422011000600010
França, K. R. S., Alves, F. M. F., Lima, T. S., Xavier, A. L. S., Azevedo, P. T. M., Araújo, I. G., Nóbrega, L. P., Paiva, Y. F., Barboza, H. S., Mendonça-Júnior, A. F., Rodrigues, A. P. M. S. & Cardoso, T. A. L. (2020). In vitro fungitoxic potential of Lippia gracilis (Schauer) essential oil against phytopathogens. Australian Journal of Crop Science, 14(4), 667-674. https://doi.org/10.21475/ajcs.20.14.04.p2310
Franco, C. S., Ribeiro, A. F., Carvalho, N. C., Monteiro, O. S., Silva, J. K. R., Andrade, E. H. A. & Maia, J. G. S. (2014). Composition and antioxidant and antifungal activities of the essential oil from Lippia gracilis Schauer. African Journal of Biotechnology, 13(30), 3107-3113. https://doi.org/10.5897/AJB2012.2941
He, R., Zhao, L., Fu, R., Chen, Z. C., Lin, X. C. & Yang, Y. (2018). Resistance of Botryodiplodia theobromae caused mango stem end rot to pyraclostrobin in Hainan. Chin. Plant protection, 44, 188–193.
Khan, A., Ahmad, A., Akhtar, F., Yousuf, S., Xess, L., Khan, L. A. & Manzoor, N. (2010). Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Research in Microbiology, 161(10), 816-823. https://doi.org/10.1016/j.resmic.2010.09.008
Lorenzi, H. & Matos, F. J. A. (2002). Plantas medicinais no Brasil: nativas e exóticas, Instituto Plantarum.
Lovelyn, C. & Attama, A. A. (2011). Current state of nanoemulsions in drug delivery. Journal of Biomaterials and Nanobiotechnology, 2(5), 626-639. https://doi.org/10.4236/jbnb.2011.225075
Marques, R. P., Monteiro, A. C. & Pereira, G. T. (2004). Crescimento, esporulação e viabilidade de fungos entomopatogênicos em meios contendo diferentes concentrações de óleo de nim (Azadirachta indica). Ciência Rural, 34(6), 1675-1680.
Marreto, R. N., Almeida, E. E. C. V., Alves, P. B., Niculau, E. S., Nunes, R. S., Matos, C. R. S. & Araujo, A. A. S. (2008). Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropil-b-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochimica Acta, 475(1-2), 53-58. https://doi.org/10.1016/j.tca.2008.06.015
Melo, J. O., Bitencourt, T. A., Fachin, A. L., Cruz, E. M. O., Jesus, H. C. R., Alves, P. B., Arrigoni-Blank, M. F., Franca, S. C., Beleboni, R. O., Fernandes, R. P. M., Blank, A. F. & Scher, R. (2013). Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Tropica, 128(1), 110-115. https://doi.org/10.1016/j.actatropica.2013.06.024
Montanari, R. M., Barbosa, L. C. A., Demuner, A. J., Silva, C. J., Andrade, N. J., Ismail, F. M. D. & Barbosa, M. C. A. (2012). Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules, 17(8), 9728-9740. https://doi.org/10.3390/molecules17089728
Ngan, L. C., Basri, M., Tripathy, M., Karjiban, R. A. & Abdul-Malek, E. (2015). Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. European Journal of Pharmaceutical Sciences, 70, 22-28. https://doi.org/10.1016/j.ejps.2015.01.006
Pascual, M. E., Slowing, K., Carretero, E., Mata, D. S. & Villar, A. (2001). Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology, 76(3), 201-214. https://doi.org/10.1016/s0378-8741(01)00234-3
Peixinho, G. S., Ribeiro, V. G. & Amorin, E. P. R. (2017). Ação do óleo essencial de menta (Mentha arvensis) sobre o patógeno Lasiodiplodia theobromae em cachos de videira cv. Itália. Summa Phytopathologica, 43(1), 32-35. https://doi.org/10.1590/0100-5405/2204
Pereira, A. V. S., Martins, R. B., Michereff, S. J., Silva, M. B. & Câmara, M. P. S. (2012). Sensitivity of Lasiodiplodia theobromae from Brazilian papaya orchards to MBC 2 and DMI fungicides. European Journal Plant Pathology, 132, 489-498. https://doi.org/10.1007/s10658-011-9891-2
Pina-Vaz, C., Rodrigues, A. G., Pinto, E., Costa-De-Oliveira, S., Tavares, C., Salgueiro, L., Cavaleiro, Gonçalves, C., M. J. & Martinez-De-Oliveira, J. (2004). Antifungal activity of Thymus oils and their major compounds. Journal of the European Academy of Dermatology and Venereology, 18(1), 73-78. https://doi.org/10.1111/j.1468-3083.2004.00886.x
Punithalingam, E. (1980). Plant diseases attributed to Botryodiplodia theobromae, 1th ed. Cramer.
Sansukcharearnpon, A., Wanichwecharungrung, S., Leepipatpaiboon, N., Kerdcharoen, T. & Arayachukeat, S. (2010). High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. International Journal of Pharmaceutics, 391(1-2), 267- 273. https://doi.org/10.1016/j.ijpharm.2010.02.020
Santos, I. T. B. F., Santos, T. S., Silva, F. L. S., Gagliardi, P. R., Oliveira, L. F. G. & Blank, A. F. (2014). Óleo essencial de Schinus terebinthifolius Raddi como controle alternativo de Colletothrichum gloeosporioides e Lasiodiplodia theobromae, fungos fitopatogênicos de pós colheita. Revista GEINTEC, 4(4): 1409 1417. https://doi.org/10.47059/geintecmagazine.v4i4.567
Selvaraj, M., Pandurangan, A., Seshadri, K. S., Sinha, P. K., Krishnasamy, V. & Lal, K. B. (2002). Comparison of mesorporous A1-MCM-41 molecular sieves in the production of ρ-cymene for isopropylation of toluene. Journal of Molecular Catalysis A: Chemical, 186(1-2), 173-186. https://doi.org/10.1016/S1381-1169(02)00134-6
Shang, L., Yang, L., Seiter, J., Heinle, M., Brenner-Weiss, G., Gerthsen, D. & Nienhaus, G.U. (2014). Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Advanced Materials Interfaces, 1(2), 1-10. https://doi.org/10.1002/admi.201300079
Sharma, N. & Tripathi, A. (2008). Integrated management of postharvest Fusarium rot of gladiolus corms using hot water, UV-C and Hyptis suaveolens (L.) Poit. essential oil. Postharvest Biology and Technology, 47(2), 246-254. https://doi.org/10.1016/j.postharvbio.2007.07.001
Slippers, B. & Wingfield, M. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. https://doi.org/10.1016/j.fbr.2007.06.002
Stević, T., Berić, T., Šavikin, K., Soković, M., Gođevac, D., Dimkić, I. & Stanković, S. (2014). Antifungal activity of selected essential oils against fungi isolated from medicinal plant. Industrial Crops and Products, 55, 116-122. https://doi.org/10.1016/j.indcrop.2014.02.011
Van Den Dool, H. & Kratz, J. D. J. (1963). A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A, 11, 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X
Veras, H. N. H., Rodrigues, F. F. G., Botelho, M. A., Menezes, I. R. A., Coutinho, M. & Costa, J. G. M. (2017). Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arabian Journal of Chemistry, 10(2), 2790-2795. http://dx.doi.org/10.1016/j.arabjc.2013.10.030.
Yang, Y., Dong, G., Wang, M., Xian, X., Wang, J. & Liang, X. (2021). Multifungicide resistance profiles and biocontrol in Lasiodiplodia theobromae from mango fields. Crop Protection, 145, 1-8. https://doi.org/10.1016/j.cropro.2021.105611
Yang, Y., Zeng, G. D., Zhang, Y., Xue, R. & Hu, Y. J. (2019). Molecular and Biochemical Characterization of Carbendazim-Resistant Botryodiplodia theobromae Field Isolates. Plant Disease, 103, 2076-2082. https://doi.org/10.1094/PDIS-01-19-0148-RE
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Juliana Oliveira de Melo; Arie Fitzgerald Blank; Rogéria de Souza Nunes; Péricles Barreto Alves; Maria de Fátima Arrigoni-Blank; Paulo Roberto Gagliardi; Alberto Ferreira do Nascimento-Júnior; Taís Santos Sampaio; Alyne Dantas Lima; Daniela Aparecida de Castro Nizio
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.