HA1077 inhibits cell proliferation of oral squamous cell carcinoma in vitro
DOI:
https://doi.org/10.33448/rsd-v11i3.26730Keywords:
Cell proliferation; HA-1077; Oral squamous cell carcinoma; ROCKs; SCC-4; Y-27632.Abstract
Oral squamous cell carcinoma is a common malignant lesion. ROCKs proteins are associated with pathogenesis and progression of human tumours. This study aimed to evaluate the functional role of ROCKs in the regulation of cell proliferation of oral squamous cell carcinoma in vitro. BrdU incorporation assays and KI-67 immunoexpression were performed by using SCC-4 cell line from oral squamous cell carcinoma. Control and treated cells: HA-1077 (25, 50 and 100 μmol/l), 50 μmol HA-1077 and Y-27632 30 μmol/l, Y-27632 30 μmol/l were cutured for 6 h. The number of SCC-4 cells treated with: HA-1077 (25, 50 and 100 μmol/l), HA-1077 50 μmol/l and/or Y-27632 30 μmol/l was significantly lower than control cells in BrdU assay [F (5.17) = 443.818, p<0.0001] and in KI-67 assay [F = 192.595, d.f. = 5,17; p<0.0001]. The results obtained suggest that the pathways that evolve ROCKs proteins play an important functional role in the positive regulation of cell proliferation in oral squamous cell carcinoma.
References
Abe, H., Kamai, T., Hayashi, K., Anzai, N., Shirataki, H., Mizuno, T., & Yoshida, K. (2014). The Rho-kinase inhibitor HA-1077 suppresses proliferation/migration and induces apoptosis of urothelial cancer cells. BMC Cancer, 14, 412. https://doi.org/10.1186/1471-2407-14-412
Abraham, M. T., Kuriakose, M. A., Sacks, P. G., Yee, H., Chiriboga, L., Bearer, E. L., & Delacure, M. D. (2001). Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope, 111(7), 1285-1289. https://doi.org/10.1097/00005537-200107000-00027
Amano, M., Nakayama, M., & Kaibuchi, K. (2010). Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken), 67(9), 545-554. https://doi.org/10.1002/cm.20472
Amaya, C. N., Mitchell, D. C., & Bryan, B. A. (2017). Rho kinase proteins display aberrant upregulation in vascular tumors and contribute to vascular tumor growth. BMC Cancer, 17(1), 485. https://doi.org/10.1186/s12885-017-3470-7
Bora, I., & Shrivastava, N. (2017). ABCs of RhoGTPases indicating potential role as oncotargets. J Cancer Res Ther, 13(1), 2-8. https://doi.org/10.4103/0973-1482.204878
Breitenlechner, C., Gassel, M., Hidaka, H., Kinzel, V., Huber, R., Engh, R. A., & Bossemeyer, D. (2003). Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity. Structure, 11(12), 1595-1607.
Chiou, S. H., Yu, C. C., Huang, C. Y., Lin, S. C., Liu, C. J., Tsai, T. H., & Lo, J. F. (2008). Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res, 14(13), 4085-4095. https://doi.org/10.1158/1078-0432.CCR-07-4404
Coleman, M. L., Marshall, C. J., & Olson, M. F. (2004). RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol, 5(5), 355-366. https://doi.org/10.1038/nrm1365
David, M., Petit, D., & Bertoglio, J. (2012). Cell cycle regulation of Rho signaling pathways. Cell Cycle, 11(16), 3003-3010. https://doi.org/10.4161/cc.21088
Defert, O., & Boland, S. (2017). Rho kinase inhibitors: a patent review (2014 - 2016). Expert Opin Ther Pat, 27(4), 507-515. https://doi.org/10.1080/13543776.2017.1272579
Demoulin, J. B., & Essaghir, A. (2014). PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev, 25(3):273-83. https://doi.org/10.1016/j.cytogfr.2014.03.003
Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342-348. https://doi.org/10.1038/35077213
Glazer, C. A., Chang, S. S., Ha, P. K., & Califano, J. A. (2009). Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice. Oral Oncol, 45(4-5), 440-446. https://doi.org/10.1016/j.oraloncology.2008.05.013
Gómez del Pulgar, T., Benitah, S. A., Valerón, P. F., Espina, C., & Lacal, J. C. (2005). Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays, 27(6), 602-613. https://doi.org/10.1002/bies.20238
Hinsenkamp, I., Schulz, S., Roscher, M., Suhr, A. M., Meyer, B., Munteanu, B., & Burgermeister, E. (2016). Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia, 18(8), 500-511. https://doi.org/10.1016/j.neo.2016.07.002
Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., Maekawa, M., & Narumiya, S. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol, 57(5), 976-983.
Jiang, L., Wen, J., & Luo, W. (2015). Rho‑associated kinase inhibitor, Y‑27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep, 12(5), 7526-7530. https://doi.org/10.3892/mmr.2015.4404
Johan, M. Z., & Samuel, M. S. (2019). Rho-ROCK signaling regulates tumor-microenvironment interactions. Biochem Soc Trans, 47(1), 101-108. https://doi.org/10.1042/BST20180334
Kleer, C. G., Teknos, T. N., Islam, M., Marcus, B., Lee, J. S., Pan, Q., & Merajver, S. D. (2006). RhoC GTPase expression as a potential marker of lymph node metastasis in squamous cell carcinomas of the head and neck. Clin Cancer Res, 12(15), 4485-4490. https://doi.org/10.1158/1078-0432.ccr-06-0376
Kümper, S., Mardakheh, F. K., McCarthy, A., Yeo, M., Stamp, G. W., Paul, A., Marshall, C. J. (2016). Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife, 5, e12994. https://doi.org/10.7554/eLife.12203
Lin, X., Khalid, S., Qureshi, M. Z., Attar, R., Yaylim, I., Ucak, I., & Ismail, M. (2016). VEGF mediated signaling in oral cancer. Cell Mol Biol (Noisy-le-grand), 62(14), 64-68. https://doi.org/10.14715/cmb/ 2016.62.14.11
Liu, B. L., Sun, K. X., Zong, Z. H., Chen, S., & Zhao, Y. (2016). MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC). Oncotarget, 7(6), 6649-6664. https://doi.org/10.18632/oncotarget.6544
Massano, J., Regateiro, F. S., Januário, G., & Ferreira, A. (2006). Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 102(1), 67-76. https://doi.org/10.1016/j.tripleo.2005.07.038
Moreira Carboni, S. e. S., Rodrigues Lima, N. A., Pinheiro, N. M., Tavares-Murta, B. M., & Crema, V. O. (2015). HA-1077 inhibits cell migration/invasion of oral squamous cell carcinoma. Anticancer Drugs, 26(9), 923-930. https://doi.org/10.1097/CAD.0000000000000267
Qiu, M. K., Wang, S. Q., Pan, C., Wang, Y., Quan, Z. W., Liu, Y. B., & Ou, J. M. (2017). ROCK inhibition as a potential therapeutic target involved in apoptosis in hemangioma. Oncol Rep, 37(5), 2987-2993. https://doi.org/10.3892/or.2017.5515
Pereira, A. S. et al. (2018). Metodologia da pesquisa cientifica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Ragin, C., Liu, J. C., Jones, G., Shoyele, O., Sowunmi, B., Kennett, R., & Taioli, E. (2016). Prevalence of HPV Infection in Racial-Ethnic Subgroups of Head and Neck Cancer Patients. Carcinogenesis, 38(2):218-229. https://doi.org/10.1093/carcin/bgw203
Steeg, P. S. (2016). Targeting metastasis. Nat Rev Cancer, 16(4), 201-218. https://doi.org/10.1038/nrc.2016.25
Stucky, A., Sedghizadeh, P. P., Mahabady, S., Chen, X., Zhang, C., Zhang, G., & Zhong, J. F. (2017). Single-cell genomic analysis of head and neck squamous cell carcinoma. Oncotarget, 8(42):73208-73218. https://doi.org/10.18632/oncotarget.18021
Thompson, J. M., Nguyen, Q. H., Singh, M., Pavesic, M. W., Nesterenko, I., Nelson, L. J., & Razorenova, O. V. (2017). Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene, 36(8), 1080-1089. https://doi.org/10.1038/onc.2016.272
Travassos, D. C., Fernandes, D., Massucato, E. M. S., Navarro, C. M., & Bufalino, A. (2017). Squamous cell carcinoma antigen as a prognostic marker and its correlation with clinicopathological features in head and neck squamous cell carcinoma: Systematic review and meta-analysis. J Oral Pathol Med, 47(1):3-10. https://doi.org/10.1111/jop.12600
Vega, F. M., & Ridley, A. J. (2008). Rho GTPases in cancer cell biology. FEBS Lett, 582(14), 2093-2101. https://doi.org/10.1016/j.febslet.2008.04.039
Wang, Z. M., Yang, D. S., Liu, J., Liu, H. B., Ye, M., & Zhang, Y. F. (2016). ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour Biol, 37(3), 3757-3764. https://doi.org/10.1007/s13277-015-4115-6
Wei, L., Surma, M., Shi, S., Lambert-Cheatham, N., & Shi, J. (2016). Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz), 64(4), 259-278. https://doi.org/10.1007/s00005-015-0382-6
Xu, X. D., Shen, H. B., Zhu, L., Lu, J. Q., Zhang, L., Luo, Z. Y., & Wu, Y. Q. (2017). Anti-RhoC siRNAs inhibit the proliferation and invasiveness of breast cancer cells via modulating the KAI1, MMP9, and CXCR4 expression. Onco Targets Ther, 10, 1827-1834. https://doi.org/10.2147/OTT.S93164
Yang, X., Di, J., Zhang, Y., Zhang, S., Lu, J., Liu, J., & Shi, W. (2012). The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomed Pharmacother, 66(3), 221-227. https://doi.org/10.1016/j.biopha.2011.11.011
Zhang, J., He, X., Ma, Y., Liu, Y., Shi, H., Guo, W., & Liu, L. (2015). Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma. Int J Clin Exp Pathol, 8(1), 244-251.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Guilherme Henrique Borges; Simone de Sales Costa Moreira Carboni; Anna Cecília Dias Maciel Carneiro; Lorraine Stephanie Hiss; Isadora Caixeta da Silveira; Virginia Oliveira Crema
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.