Corrosão ácida do ferro fundido cinzento e do aço visando a produção de hidrogênio
DOI:
https://doi.org/10.33448/rsd-v11i4.27054Palavras-chave:
Velocidade de corrosão; Método gravimétrico; Ácido clorídrico; Ácido sulfúrico.Resumo
As ligas metálicas são os produtos mais utilizados nas tarefas do dia-a-dia, sendo que diariamente são descartados milhares de toneladas no meio ambiente. Pelo estudo de processos de corrosão de metais, é possível propor aplicações para materiais metálicos inutilizados, empregando-se oxidação em meio ácido, e gerando-se hidrogênio. Com isso, o objetivo desse trabalho é avaliar a corrosão ácida de metais, reaproveitados, para a produção de hidrogênio. A metodologia utilizada foi a corrosão realizada com aço e ferro fundido cinzento, provenientes de sucatas automotivas, variando-se e combinando-se o material metálico, os tipos de ácidos (Sulfúrico e Clorídrico) e o tempo de reação, construindo-se a curva de corrosão do material. Para a quantificação dos teores de Fe, foi empregada a espectrometria de absorção atômica com chama. Nos resultados foi apresentada a influência de ácidos e metais, com propriedades e composições químicas distintas, na velocidade de corrosão e consequentemente na perda de material. Foram justificados com base na literatura, os possíveis fatores que são significativos na reação que fizeram com que ocorressem comportamentos inesperados nos resultados, como a maior perda de massa do metal quando imerso em ácido com menor molaridade. Como considerações finais, verificou-se que é possível prosseguir com pesquisas que visem a produção de hidrogênio a partir da corrosão de metais residuais, de forma a minimizar problemas ambientais, gerando uma nova fonte de energia.
Referências
Coronel-García, M. A., Salazar-Barrera, J. G., Malpica-Maldonado, J. J., Martínez-Salazar, A. L., & Melo-Banda, J. A. (2020). Hydrogen production by aluminum corrosion in aqueous hydrochloric acid solution promoted by sodium molybdate dihydrate. International Journal of Hydrogen Energy, 45(26), 13693–13701. https://doi.org/10.1016/j.ijhydene.2020.01.122
Dincer, I. (2012). Green methods for hydrogen production. International Journal of Hydrogen Energy, 37(2), 1954–1971. https://doi.org/10.1016/j.ijhydene.2011.03.173
Dincer, I., & Acar, C. (2014). Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy, 40(34), 11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035
Fernandes, D. M., Squissato, A. L., Lima, A. F., Richter, E. M., & Munoz, R. A. A. (2019). Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions. Renewable Energy, 139, 1263–1271. https://doi.org/10.1016/j.renene.2019.03.034
Gentil, V. (2012). Corrosão. Rio de Janeiro: LTC, 6 ª ed.
Jin, Z.; Xiong, C.; Zhao, T.; Du, Y.; Zhang, X.; Li, N.; Yu, Y. & Wang, P. (2022) Passivation and depassivation properties of Cr–Mo alloyed corrosion-resistant steel in simulated concrete pore solution. Cement and Concrete Composites, 126, 104375, ISSN 0958-9465, https://doi.org/10.1016/j.cemconcomp.2021.104375
Kochanek, E. (2021). The Energy Transition in the Visegrad Group Countries, Energies, 14, 2212. https://doi.org/10.3390/en14082212
Kong, L.; Li, L.; Liu, C.; Ma, P.; Bian, Y. & Ma, T. (2021). Techno-economic analysis of hydrogen energy for renewable energy power smoothing. International Journal of Hydrogen Energy, 46, 2847-2861.
Kuo, P. C., Illathukandy, B., Wu, W., & Chang, J. S. (2021). Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass. Energy, 223, 120025. https://doi.org/10.1016/j.energy.2021.120025
Labiapari, W. S., Ardila, M. A. N., Binder, C., Costa, H. L., & de Mello, J. D. B. (2019). Mechanical effects on the corrosion resistance of ferritic stainless steels during microabrasion-corrosion. Wear, 426–427, 1474–1481. https://doi.org/10.1016/j.wear.2018.12.057
Liang, J., Gao, L. J., Miao, N. N., Chai, Y. J., Wang, N., & Song, X. Q. (2016). Hydrogen generation by reaction of Al–M (M = Fe,Co,Ni) with water. Energy, 113, 282–287. https://doi.org/10.1016/j.energy.2016.07.013
Lu, Y., Khan, Z. A., Alvarez-Alvarado, M. S., Zhang, Y., Huang, Z., & Imran, M. (2020). A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability (Switzerland), 12(12), 1–30. https://doi.org/10.3390/su12125078.
Maeda, T; Teixiera, L.; Caixeta, L.; Antonellli, R.; Pinto, C.;Dantas, S.; Silva, P.;Granato, A.;Fernandes, D.; Malpass, G. (2021). Feasibility of H2 production by acid corrosion using H2SiF6 and waste Fe sources. Química Nova, 1–10. https://doi.org/http://dx.doi.org/10.21577/0100-4042.20170778.
Oliveira, A. R. (2012). Corrosão e Tratamento de Superfície. Belém: Escola Técnica Aberta do Brasil IFPA, 104p. Trabalho de Conclusão de Curso (Especialização em Corrosão).
Pereira, A.S. et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 5 abril 2020.
Reuß, M., Dimos, P., Aline, L., Grube, T., Robinius, M., & Stolten, D. (2021). Hydrogen Road Transport Analysis in the Energy System : A Case Study for Germany through 2050, Energies, 14, 3166. https://doi.org/ 10.3390/en14113166
Sato, N. (1990). An overview on the passivity of metals. Corrosion Science, v. 31, p. 1-19, ISSN 0010-938X, https://doi.org/10.1016/0010-938X(90)90086-K.
Serbino, E.M. (2005). Um estudo dos mecanismos de desgaste em disco de freio automotivo ventilado de ferro fundido cinzento perlítico com grafita lamelar. Escola Politécnica da Universidade de São Paulo, USP, 123p. Dissertação (Mestrado em Engenharia), São Paulo.
Kumar S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002
Xu, X., Liu, S., Smith, K., Cui, Y., & Wang, Z. (2020). An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. In Journal of Cleaner Production (Vol. 276). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.124079
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Pâmella Oliveira Bernardo Ferreira; Tatiane Carvalho Maeda; Alexandre de Faria Lima; Geoffroy Roger Pointer Malpass ; Sandra Cristina Dantas

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
1) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
2) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
3) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.