Dissolved oxygen, organic matter and nutrients in fish systems combined with bio-addition of friendly microorganisms
DOI:
https://doi.org/10.33448/rsd-v11i4.27382Keywords:
Wastewater; Beneficial bacteria; Aquaculture; Mathematical adjustments.Abstract
Effluents from conventional intensive aquaculture, based on high water exchange, may strongly contribute to the acceleration of eutrophication processes, due to the significant nutrient load present in unconsumed foods and excreted waste. On the other hand, there are intensive and super-intensive systems for the cultivation of aquatic organisms that use water exchange associated with strong aeration and biological transformation of macronutrients. Such sustainable systems use the bio-addition of friendly microorganisms to increase the rate of degradation of macronutrients and maintain water quality. A mathematical adjustment was used in this study to verify the dynamics of organic matter, nitrogen and phosphate during the experiment period. A pulse dynamic at regular times occurred indistinctly for all indicators evaluated in this study, although the intensity of the pulses showed particularities among the different indicators of water quality. Although the behavior of regular pulses of the indicators occurred, this condition did not affect the growth of fish subjected to a simulated system of intensive production associated with the bio-addition of friendly microorganisms.
References
Adel, M. & Dawood, M. A. O. (2021). Probiotics application: implications for sustainable aquaculture. in: Mojgani, N. and Dadar, M. (Eds.), Probiotic bacteria and postbiotic metabolites: role in animal and human health. Springer, Singapore, pp. 191–219.
Boyd, C. E. (2017). General relationship between water quality and aquaculture performance in ponds. in: Jeney, G (Eds.), Fish diseases: prevention and control strategies. Academic Press, Amsterdam, Holanda, pp. 147 – 166.
Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226(1–4), 101–12. https://doi.org/10.1016/S0044-8486(03)00471-X.
Boyd, C. E. & Tucker, C. S. (1992). Water quality and pond soil analyses for aquaculture. Auburn University,Auburn, Estados Unidos,188 pp.
Brown, L., 2000. Aquaculture for veterinarians: fish production and clinic. Editorial Acribia, Zaragoza, Espanha, 447 pp.
Chen, Z., Chang, Z., Zhang, L., Wang, J., Qiao, L., Song, X. & Li, J. (2020). Effects of carbon source addition on microbial community and water quality in recirculating aquaculture systems for Litopenaeus vannamei. Fisheries Science, 86(3), 507–17. https://doi.org/10.1007/s12562-020-01423-3.
Coldebella, A., Gentelini, A., Piana, P., Coldebella, P., Boscolo, W. & Feiden, A. (2018). Effluents from fish farming ponds: a view from the perspective of its main components. Sustainability, 10, (2) 3–19. https://doi.org/10.3390/su10010003.
David, F. S., Proença, D. C. & Valenti, W. C. (2017). Phosphorus budget in integrated multitrophic aquaculture systems with nile tilapia, Oreochromis niloticus , and amazon river prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 48, (3), 402–14. https://doi.org/10.1111/jwas.12404.
Deng, M., Zhao, X., Senbati, Y., Song, K. & He, X. (2021). Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium pseudomonas sp. DM02: removal performance, mechanism and immobilized application for real aquaculture wastewater treatment. Bioresource Technology, v. 322, p. 124555. https://doi.org/10.1016/j.biortech.2020.124555.
Divya, M., Aanand, S., Srinivasan, A. & Ahilan, B. (2015). Bioremediation – an eco-friendly tool for effluent treatment: a review. International Journal of Applied Research, 1, 530–37.
Esteves, F. de A. (2011). Fundamentos de Limnologia. Interciência, 226 pp.
Flickinger, D. L., Costa, G. A., Dantas, D. P., Proença, D. C., David, F. S., Durborow, R. M., Moraes-Valenti, P. & Valenti, W. C. (2020). The budget of carbon in the farming of the Amazon River prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquaculture Reports, v. 17, p. 100340. https://doi.org/ 10.1016/j.aqrep.2020.100340.
Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. (1978). Methods for physical and chemical analysis of freshwater. Blackwell Science Publishing, Oxford, Reino Unido, 224 pp.
Hargreaves, J. A. (1998). Nitrogen Biogeochemistry of Aquaculture Ponds. Aquaculture, 166, (3–4), 181–212. https://doi.org/ 10.1016/S0044-8486(98)00298-1.
Hoang, M. N., Nguyen, P. N., Le, D. V. B., Nguyen, D. V. & Bossier, P. 2018. Effects of stocking density of gray mullet mugil cephalus on water quality, growth performance, nutrient conversion rate, and microbial community structure in the white shrimp Litopenaeus vannamei integrated system. Aquaculture, v. 496, pp. 123–133. https://doi.org/ 10.1016/j.aquaculture.2018.07.018.
Jalil, A., Li, Y., Zhang, K., Gao, X., Wang, W., Khan, H. O. S., Pan, B., Ali, S. & Acharya, K. 2019. Wind-Induced hydrodynamic changes impact on sediment resuspension for large, shallow lake Taihu, China. International Journal of Sediment Research, v. 34, (3), pp. 205–215. https://doi.org/ 10.1016/j.ijsrc.2018.11.003.
Klawonn, I., Bonaglia, S., Brüchert, V. & Ploug, H. 2015. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. The ISME Journal, v. 9, (6), pp. 1456–66. https://doi.org/ 10.1038/ismej.2014.232.
Kroupová, H. K., Valentová, O., Svobodová, Z., Šauer, P. & Máchová, J. 2018. Toxic effects of nitrite on freshwater organisms: a review. Reviews in Aquaculture, v. 10, (3), pp. 525–532. https://doi.org/ 10.1111/raq.12184.
Leal, J. F., Neves, M. G. P. M. S., Santos, E. B. H. & Esteves, V. I. 2018. Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Reviews in Aquaculture, v. 10, no. 2, pp. 281–295. https://doi.org/10.1111/raq.12160.
Li, F., Feng, J., Zhou, X., Liu, Y., Xu, C., Ji, L., Chen, Z., Jijakli, M. H., Fang, F. & Zhang, W. 2020. Effect of rice-fish/shrimp co-culture on sediment resuspension and associated nutrients release in intensive aquaculture ponds. Archives of Agronomy and Soil Science, v. 66, no. 7, pp. 971–982. https://doi.org/10.1080/03650340.2019.1649395.
Li, M., Callier, M. D., Blancheton, J.-P., Galès, A., Nahon, S., Triplet, S., Geoffroy, T., Menniti, C., Fouilland, E. & Roque d’orbcastel, E. 2019. Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture systems. Aquaculture, v. 504, pp. 314–325. https://doi.org/10.1016/j.aquaculture.2019.02.013.
Li, Y., Tang, C., Wang, J., Acharya, K., Du, W., Gao, X., Luo, L., et al. 2017.Effect of wave-current interactions on sediment resuspension in large shallow lake Taihu, China. Environmental Science and Pollution Research, v. 24, no. 4, pp. 4029–39. https://doi.org/ 10.1007/s11356-016-8165-0.
Liong, M. T. 2015. Beneficial microorganisms in agriculture, aquaculture and other areas. Springer, Cham, Suiça, 220 pp.
Liu, W., Luo, G., Tan, H. & Sun, D. 2016. Effects of sludge retention time on water quality and bioflocs yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor. Aquacultural Engineering, v. 72–73, pp. 58–64. https://doi.org/10.1016/j.aquaeng.2016.04.002.
Lukwambe, B., Qiuqian, L., Wu, J., Zhang, D., Wang, K. & Zheng, Z. 2015. The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) Aquaculture Ponds. Aquaculture International, v. 23, (6), pp. 1443–55. https://doi.org/10.1007/s10499-015-9895-6.
Luo, G., Xu, J. & Meng, H. 2020. Nitrate Accumulation in Biofloc Aquaculture Systems. Aquaculture, v. 520, p. 734675. https://doi.org/10.1016/j.aquaculture.2019.734675.
Manzoor, M., Ma, R., Shakir, H. A., Tabssum, F., Javed & Qazi, I. 2016. Microalgal-Bacterial Consortium: a cost-effective approach of wastewater treatment in Pakistan. Punjab University Journal of Zoology, v. 31, pp. 307–320.
Nixon, S. W. & Pilson, M. E. 1983. Nitrogen in Estuarine and Coastal Marine Ecosystems. In: Carpenter, E. J and Capone, D. G. (Eds.), Nitrogen in the Marine Environment. Academic Press, New York, USA, pp. 565–648.
Pinto, D. de S. B., Maltez, L. C., Stringhetta, G. R., Pellegrin, L., Nitz, L. F., Figueiredo, M. R. C. & Garcia, L. de O. 2016. Ammonia and nitrite acute toxicity in juvenile piavuçu Leporinus macrocephalus (Actinopterygii, Anostomidae). Pan-American Journal of Aquatic Sciences, v. 11, pp. 292–300,.
Rubinos, D. A., Iglesias, L., Díaz-Fierros, F. & Barral, M. T. Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquatic Geochemistry, v. 17, (3), pp. 281–306. https://doi.org/10.1007/s10498-011-9135-2.
Samer, M. (2015). Biological and chemical wastewater treatment processes. In: Samer, M (Eds.), Wastewater Treatment Engineering. InTech, Rijeka, Croácia. pp. 1–50.
Simonovic, S. P. (2002. World water dynamics: global modeling of water resources. Journal of Environmental Management, 66, (3), 249–67. DOI: https://doi.org/10.1006/jema.2002.0585.
Sperling, M. V. 2017. Introdução a qualidade das águas e ao tratamento de esgotos. Editora UFMG, Minas Gerais, 45 pp.
Verdegem, M. & Beristain, T. B. Degradation of organic matter and bacterial biomass in aquaculture production systems. Aquaculture, v. 2, pp. 15–19, 2005.
Xu, W.J., Morris, T. C. & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169–75. https://doi.org/10.1016/j.aquaculture.2015.11.021.
Yun, L., Yu, Z., Li, Y., Luo, P., Jiang, X., Tian, Y. & Ding, X. (2019). Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture. Aquaculture, 500, 477–84. https://doi.org/10.1016/j.aquaculture.2018.10.054.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ruy Bessa Lopes; Joseph Simões Ribeiro; Suellen Caroline Barbosa Neves; Lizandra Ferreira Lameira; Lucinewton Silva de Moura; Maxwell Barbosa de Santana ; Paulo Sergio Taube
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.