Oxígeno disuelto, materia orgánica y nutrientes en sistemas de peces combinados con bioadición de microorganismos amigables

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i4.27382

Palabras clave:

Aguas Residuales; Bacterias beneficiosas; Acuicultura; Ajustes matemáticos.

Resumen

Los efluentes de la acuicultura intensiva convencional, basada en un alto recambio de agua, pueden contribuir fuertemente a la aceleración de los procesos de eutrofización, debido a la importante carga de nutrientes presentes en los alimentos no consumidos y los residuos excretados. Por otro lado, existen sistemas intensivos y superintensivos de cultivo de organismos acuáticos que utilizan intercambios de agua asociados a una fuerte aireación y transformación biológica de macronutrientes. Estos sistemas sostenibles utilizan la bioadición de microorganismos amigables para aumentar la tasa de degradación de macronutrientes y mantener la calidad del agua. En este estudio se utilizó un ajuste matemático para verificar la dinámica de la materia orgánica, el nitrógeno y el fosfato durante el período del experimento. Una dinámica de pulsos en tiempos regulares ocurrió indistintamente para todos los indicadores evaluados en este estudio, aunque la intensidad de los pulsos presentó particularidades entre los diferentes indicadores de calidad del agua. Si bien se presentó el comportamiento de pulsos regulares de los indicadores, esta condición no afectó el crecimiento de los peces sometidos a un sistema simulado de producción intensiva asociado a la bioadición de microorganismos amigables.

Biografía del autor/a

Ruy Bessa Lopes, Universidade Federal do Oeste do Pará

Biólogo, Prof. Dr. Vinculado ao Instituto de Ciência e Tecnologia das Águas - UFOPA/ICTA

Joseph Simões Ribeiro, Universidade Federal do Oeste do Pará

Biólogo, Mestre em Sociedade, Ambiente e Qualidade de Vida pela Universidade Federal do Oeste do Pará - UFOPA/PPGSAQ

Suellen Caroline Barbosa Neves, Universidade Federal do Oeste do Pará

Bióloga pela Universidade Federal do Oeste do Pará, UFOPA/ICTA

Lizandra Ferreira Lameira, Universidade Federal do Oeste do Pará

Bióloga pela Universidade Federal do Oeste do Pará, UFOPA/ICTA

Lucinewton Silva de Moura, Universidade Federal do Oeste do Pará

Engenheiro Químico Prof. Dr. Vinculado ao Instituto de Ciência e Tecnologia das Águas - UFOPA/ICTA

Maxwell Barbosa de Santana , Universidade Federal do Oeste do Pará

Biomédico, Prof. Dr. Vinculado ao Instituto de Ciência e Tecnologia das Águas - UFOPA/ICTA

Paulo Sergio Taube, Universidade Federal do Oeste do Pará

Químico, Prof. Dr. Vinculado ao Instituto de Biodiversidade e Floresta – UFOPA/IBEF

Citas

Adel, M. & Dawood, M. A. O. (2021). Probiotics application: implications for sustainable aquaculture. in: Mojgani, N. and Dadar, M. (Eds.), Probiotic bacteria and postbiotic metabolites: role in animal and human health. Springer, Singapore, pp. 191–219.

Boyd, C. E. (2017). General relationship between water quality and aquaculture performance in ponds. in: Jeney, G (Eds.), Fish diseases: prevention and control strategies. Academic Press, Amsterdam, Holanda, pp. 147 – 166.

Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm-level. Aquaculture, 226(1–4), 101–12. https://doi.org/10.1016/S0044-8486(03)00471-X.

Boyd, C. E. & Tucker, C. S. (1992). Water quality and pond soil analyses for aquaculture. Auburn University,Auburn, Estados Unidos,188 pp.

Brown, L., 2000. Aquaculture for veterinarians: fish production and clinic. Editorial Acribia, Zaragoza, Espanha, 447 pp.

Chen, Z., Chang, Z., Zhang, L., Wang, J., Qiao, L., Song, X. & Li, J. (2020). Effects of carbon source addition on microbial community and water quality in recirculating aquaculture systems for Litopenaeus vannamei. Fisheries Science, 86(3), 507–17. https://doi.org/10.1007/s12562-020-01423-3.

Coldebella, A., Gentelini, A., Piana, P., Coldebella, P., Boscolo, W. & Feiden, A. (2018). Effluents from fish farming ponds: a view from the perspective of its main components. Sustainability, 10, (2) 3–19. https://doi.org/10.3390/su10010003.

David, F. S., Proença, D. C. & Valenti, W. C. (2017). Phosphorus budget in integrated multitrophic aquaculture systems with nile tilapia, Oreochromis niloticus , and amazon river prawn, Macrobrachium amazonicum. Journal of the World Aquaculture Society, 48, (3), 402–14. https://doi.org/10.1111/jwas.12404.

Deng, M., Zhao, X., Senbati, Y., Song, K. & He, X. (2021). Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium pseudomonas sp. DM02: removal performance, mechanism and immobilized application for real aquaculture wastewater treatment. Bioresource Technology, v. 322, p. 124555. https://doi.org/10.1016/j.biortech.2020.124555.

Divya, M., Aanand, S., Srinivasan, A. & Ahilan, B. (2015). Bioremediation – an eco-friendly tool for effluent treatment: a review. International Journal of Applied Research, 1, 530–37.

Esteves, F. de A. (2011). Fundamentos de Limnologia. Interciência, 226 pp.

Flickinger, D. L., Costa, G. A., Dantas, D. P., Proença, D. C., David, F. S., Durborow, R. M., Moraes-Valenti, P. & Valenti, W. C. (2020). The budget of carbon in the farming of the Amazon River prawn and tambaqui fish in earthen pond monoculture and integrated multitrophic systems. Aquaculture Reports, v. 17, p. 100340. https://doi.org/ 10.1016/j.aqrep.2020.100340.

Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. (1978). Methods for physical and chemical analysis of freshwater. Blackwell Science Publishing, Oxford, Reino Unido, 224 pp.

Hargreaves, J. A. (1998). Nitrogen Biogeochemistry of Aquaculture Ponds. Aquaculture, 166, (3–4), 181–212. https://doi.org/ 10.1016/S0044-8486(98)00298-1.

Hoang, M. N., Nguyen, P. N., Le, D. V. B., Nguyen, D. V. & Bossier, P. 2018. Effects of stocking density of gray mullet mugil cephalus on water quality, growth performance, nutrient conversion rate, and microbial community structure in the white shrimp Litopenaeus vannamei integrated system. Aquaculture, v. 496, pp. 123–133. https://doi.org/ 10.1016/j.aquaculture.2018.07.018.

Jalil, A., Li, Y., Zhang, K., Gao, X., Wang, W., Khan, H. O. S., Pan, B., Ali, S. & Acharya, K. 2019. Wind-Induced hydrodynamic changes impact on sediment resuspension for large, shallow lake Taihu, China. International Journal of Sediment Research, v. 34, (3), pp. 205–215. https://doi.org/ 10.1016/j.ijsrc.2018.11.003.

Klawonn, I., Bonaglia, S., Brüchert, V. & Ploug, H. 2015. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates. The ISME Journal, v. 9, (6), pp. 1456–66. https://doi.org/ 10.1038/ismej.2014.232.

Kroupová, H. K., Valentová, O., Svobodová, Z., Šauer, P. & Máchová, J. 2018. Toxic effects of nitrite on freshwater organisms: a review. Reviews in Aquaculture, v. 10, (3), pp. 525–532. https://doi.org/ 10.1111/raq.12184.

Leal, J. F., Neves, M. G. P. M. S., Santos, E. B. H. & Esteves, V. I. 2018. Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Reviews in Aquaculture, v. 10, no. 2, pp. 281–295. https://doi.org/10.1111/raq.12160.

Li, F., Feng, J., Zhou, X., Liu, Y., Xu, C., Ji, L., Chen, Z., Jijakli, M. H., Fang, F. & Zhang, W. 2020. Effect of rice-fish/shrimp co-culture on sediment resuspension and associated nutrients release in intensive aquaculture ponds. Archives of Agronomy and Soil Science, v. 66, no. 7, pp. 971–982. https://doi.org/10.1080/03650340.2019.1649395.

Li, M., Callier, M. D., Blancheton, J.-P., Galès, A., Nahon, S., Triplet, S., Geoffroy, T., Menniti, C., Fouilland, E. & Roque d’orbcastel, E. 2019. Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture systems. Aquaculture, v. 504, pp. 314–325. https://doi.org/10.1016/j.aquaculture.2019.02.013.

Li, Y., Tang, C., Wang, J., Acharya, K., Du, W., Gao, X., Luo, L., et al. 2017.Effect of wave-current interactions on sediment resuspension in large shallow lake Taihu, China. Environmental Science and Pollution Research, v. 24, no. 4, pp. 4029–39. https://doi.org/ 10.1007/s11356-016-8165-0.

Liong, M. T. 2015. Beneficial microorganisms in agriculture, aquaculture and other areas. Springer, Cham, Suiça, 220 pp.

Liu, W., Luo, G., Tan, H. & Sun, D. 2016. Effects of sludge retention time on water quality and bioflocs yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor. Aquacultural Engineering, v. 72–73, pp. 58–64. https://doi.org/10.1016/j.aquaeng.2016.04.002.

Lukwambe, B., Qiuqian, L., Wu, J., Zhang, D., Wang, K. & Zheng, Z. 2015. The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) Aquaculture Ponds. Aquaculture International, v. 23, (6), pp. 1443–55. https://doi.org/10.1007/s10499-015-9895-6.

Luo, G., Xu, J. & Meng, H. 2020. Nitrate Accumulation in Biofloc Aquaculture Systems. Aquaculture, v. 520, p. 734675. https://doi.org/10.1016/j.aquaculture.2019.734675.

Manzoor, M., Ma, R., Shakir, H. A., Tabssum, F., Javed & Qazi, I. 2016. Microalgal-Bacterial Consortium: a cost-effective approach of wastewater treatment in Pakistan. Punjab University Journal of Zoology, v. 31, pp. 307–320.

Nixon, S. W. & Pilson, M. E. 1983. Nitrogen in Estuarine and Coastal Marine Ecosystems. In: Carpenter, E. J and Capone, D. G. (Eds.), Nitrogen in the Marine Environment. Academic Press, New York, USA, pp. 565–648.

Pinto, D. de S. B., Maltez, L. C., Stringhetta, G. R., Pellegrin, L., Nitz, L. F., Figueiredo, M. R. C. & Garcia, L. de O. 2016. Ammonia and nitrite acute toxicity in juvenile piavuçu Leporinus macrocephalus (Actinopterygii, Anostomidae). Pan-American Journal of Aquatic Sciences, v. 11, pp. 292–300,.

Rubinos, D. A., Iglesias, L., Díaz-Fierros, F. & Barral, M. T. Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquatic Geochemistry, v. 17, (3), pp. 281–306. https://doi.org/10.1007/s10498-011-9135-2.

Samer, M. (2015). Biological and chemical wastewater treatment processes. In: Samer, M (Eds.), Wastewater Treatment Engineering. InTech, Rijeka, Croácia. pp. 1–50.

Simonovic, S. P. (2002. World water dynamics: global modeling of water resources. Journal of Environmental Management, 66, (3), 249–67. DOI: https://doi.org/10.1006/jema.2002.0585.

Sperling, M. V. 2017. Introdução a qualidade das águas e ao tratamento de esgotos. Editora UFMG, Minas Gerais, 45 pp.

Verdegem, M. & Beristain, T. B. Degradation of organic matter and bacterial biomass in aquaculture production systems. Aquaculture, v. 2, pp. 15–19, 2005.

Xu, W.J., Morris, T. C. & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169–75. https://doi.org/10.1016/j.aquaculture.2015.11.021.

Yun, L., Yu, Z., Li, Y., Luo, P., Jiang, X., Tian, Y. & Ding, X. (2019). Ammonia nitrogen and nitrite removal by a heterotrophic Sphingomonas sp. strain LPN080 and its potential application in aquaculture. Aquaculture, 500, 477–84. https://doi.org/10.1016/j.aquaculture.2018.10.054.

Descargas

Publicado

17/03/2022

Cómo citar

LOPES, R. B. .; RIBEIRO, J. S.; NEVES, S. C. B. .; LAMEIRA, L. F. .; MOURA, L. S. de .; SANTANA , M. B. de .; TAUBE, P. S. . Oxígeno disuelto, materia orgánica y nutrientes en sistemas de peces combinados con bioadición de microorganismos amigables. Research, Society and Development, [S. l.], v. 11, n. 4, p. e26111427382, 2022. DOI: 10.33448/rsd-v11i4.27382. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27382. Acesso em: 23 dic. 2024.

Número

Sección

Ciencias Agrarias y Biológicas