Recent advances in environmental biotechnology: role of biosurfactants in remediation of heavy metals

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.27453

Keywords:

Biosurfactants; Heavy metals; Remediation.

Abstract

Soil contamination by heavy metals is a result of different activities, such as minings, metal smelting, and car battery production. Heavy metals can cause environmental hazards such as contamination of biological systems and the subsoil through the leaching process, and various disturbances and diseases in humans, if they enter the ecosystem, due to their high environmental toxicity and difficult degradability. Non-toxic and biodegradable biological surfactant compounds, also known as biosurfactants, are being used to remediate soils contaminated by heavy metals. The objective of this review is to address the potential application of biosurfactants in the removal of heavy metals and in processes involved in bioremediation. The present study is a narrative review, consisting of a broad analysis of the literature. The searches for the articles used to compose this study were carried out in digital scientific databases, using terms and keywords. This review provides information on biosurfactant application as a promising alternative in heavy metal removal and oil spill bioremediation.

References

Ahmadi-Ashtiani, H-R., Baldisserotto, A., Cesa, H., Manfredini, S., Zadeh, H. S., Gorab, M. G., Khanahmadi, M., Zakizadeh, S., Buso, P. & Vertuani, S. (2020). Microbial Biosurfactants as Key Multifunctional Ingredients for Sustainable Cosmetics. Cosmetics, 7 (2), 46.

Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., & Alara, O. R. (2018). Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnology Research and Innovation, 2 (1), 81–90.

Almeida, D. G., Silva, R. C. F. S., Brasileiro, P. P. F., Luna, J. M., Silva, M. G. C., Rufino, R. D., Costa, A. F. S., Santos, V. A., & Sarubbo, L. A. (2018). Application of a biosurfactant from Candida tropicalis UCP 0996 produced in low-cost substrates for hydrophobic contaminants removal. Chemical Engineering Transactions, 64, 541-546.

Almeida, D. G., Silva, R. C. F. S., Luna, J. M., Rufino, R. D., Santos, V. A., Banat, I. M., & Sarubbo, L. A. (2016). Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances, Frontiers in Microbiology, 7 (1), 1718.

Almeida, F. C. G., Silva, T. A. L., Garrard, I., Sarubbo, L. A., Campos-Takaki, G. M., & Tambourgi, E. B. (2015). Optimization and evaluation of biosurfactant produced by Pantoea sp. Using pineapple peel residue, vegetable fat and corn steep liquor. J. Chem. Eng, 9, 269-279.

Alkan, Z., Erginkaya, Z., Konuray, G., & Ünal Turhan, E. (2019). Production of biosurfactant by lactic acid bacteria using whey as growth medium. Turkish Journal of Veterinary and Animal Sciences, 43 (5), 676-683.

Al-Tamimi, W.H., Lazim, S. A., Abd Al-Sahib, M. A., Hameed, Z. M, Al-Amara, S. S. M., Burghal, A. A., & Al-Maqtoofi, M. Y. (2019). Improved oil recovery by using biosurfactant produced from Bacillus bacteria isolated from oil reservoir in Iraq. Poll Res, 38 (3), 551-556.

Avila-Campos, M. J. Metais Pesados: Um Perigo Eminente. Departamento de Microbiologia, Universidade de São Paulo. http://www.icb.usp.br/bmm/mariojac/index.php?option=com_content&view=article&catid=13%3Atemas-de interesse&id=33%3Ametais-pesados-um-perigo-eminente&lang=br.

Banat, I. M., De Rienzo, M. A. D, & Quinn, G. A. (2014). Microbial biofilms: biosurfactants as antibiofilm agents. Applied Microbiology and Biotechnology, 98 (24), 9915-9929.

Batista, R. M., Rufino, R. D., Luna, J. M., Souza, J. E. G., & Sarubbo, L. A. (2010). Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environment Research, 82 (5), 418-425.

Bezerra, K. G. O., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. (2018). Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics. Biotechnology Progress, 34 (6), 1482-1493.

Borah, D. (2018). Microbial bioremediation of petroleum hydrocarbon: An overview. In: Microbial Action on Hydrocarbons. Springer, Singapore, 321-341.

Bravo, C. E. C., Strapazzos, R., Martins, R. C., Cembranel, A. S., & Pinto, E. P. (2020). Multivariate selection of nutrient parameters in submerged culture of kluyveromyces marxianus for biosurfactant production/Seleção multivariada de parâmetros nutricionais em cultivo submerso de kluyveromyces marxianus para produção de biossurfactante. Brazilian Journal of Development, 6 (3), 10842-10854.

Campos, J. M., Stamford, T. L. M., Sarubbo, L. A., Luna, J. M., Rufino, R. D., & Banat, I. M. (2013). Microbial Biosurfactants as Additives for Food Industries. Biotechnology Progress, 29 (5), 1097-1108.

Chaprão, M. J., Ferreira, I. N. S., Correa, P. F., Rufino, R. D., Luna, J. M., Silva, E. J., & Sarubbo, L. A. (2015). Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electronic Journal of Biotechnology, 18 (6), 471-479.

Das, A. J., & Kumar, R. (2019). Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environmental Technology & Innovation, 16, 100450.

Drakontis, C. E., & Amin S. (2020). Biosurfactants: Formulations, Properties, and Applications. Current Opinion in Colloid & Interface Science, 48, 77-90.

Dell’Anno, F., Sansone, C., Ianora, A., & Dell’Anno, U. (2018). Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. Marine Environmental Research, 137, 196-205.

Durán, S. M., Reyes, L. P., & Durán, A. S. (2020). Evaluation of agro-industrial residues produced in Costa Rica for a low-cost culture medium using Bacillus subtilis 168. Revista Tecnología en Marcha, 15-25.

Durval, I. J. B., Resende, A. H. M., Figueiredo, M. A., Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2019). Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil‐spill bioremediation. Journal of Surfactants and Detergents, 22 (2), 349-363.

Ezebuiro, V., Otaraku, I. J., Oruwari, B., & Okpokwasili, G. C. (2019). Effects of Nitrogen and Carbon Sources on Biosurfactant Production by Hydrocarbon-utilizing Stenotrophomonas sp. Microbiology Research Journal International, 29 (5), 1-10.

Fenibo, E. O., Douglas, S. I., & Stanley, H. O. (2019). A review on microbial surfactants: production, classifications, properties and characterization. Journal of Advances in Microbiology, 18 (3), 1-22.

Gomes, C. H., Viçozzi, A. P., Dias, G. P., & Sperandio, D. G. (2020). Geochemistry water of the Camaquã das Lavras and Hilário streams, Lavras do Sul-RS: anthropogenic or natural? Revista Ambiente & Água, 15 (1), 2445.

Gomes, C., Sperandio, D., Borges, N., Barbosa, A., Viçozzi, A., & Dias, G. P. (2019). Water Quality Assessment through PCA Analysis. International Journal of Advanced Engineering Research and Science, 6 (3), 202-210.

Guan, R., Yuan, X., Wu, Z., Wang, H., Jiang, L., Li, Y., & Zeng, G. (2017). Functionality of surfactants in waste-activated sludge treatment: a review. Science of the Total Environment, 609, 1433-1442.

Gusmão, C. A. B., Rufino, R. D., & Sarubbo, L. A. (2010). Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World Journal of Microbiology and Biotechnology, 26 (9), 1683-1692.

Gnanamani, A., Kavitha, V., Radhakrishnan, N., Rajakumar, G. S., Sekaran, G., & Mandal, A. B. (2010). Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids and Surfaces B: Biointerfaces, 79 (2), 334–339.

Haq, Z. U., Rehman, N., Ali, F., Lhan, N. M., & Ullah, H. (2017). Physico-chemical properties of cationic surfactant cetyltrimethylammonium bromide in the presence of electrolyte. Journal of Materials, 8 (3), 1029-1038.

Held, P. (2014). Rapid critical micelle concentration (CMC) determination using fluorescence polarization. BioTek Application Note.

Henkel, M., & Hausmann, R. (2019). Diversity and Classification of Microbial Surfactants. In: Biobased Surfactants. AOCS Press, (2a ed.), 41-63.

Hua, Z., Chen, J., Lun, S., & Wang, X. (2003). Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water research, 37 (17), 4143-4150.

Kim, H-S., Jeon, J-W., Lee, H.W., Yong-Il, P., Seo, W-T., Oh, H.M., Katsuragi, T., Tani, Y., & Yoon, B. D. (2002). Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnology letters, 24 (3), 225-229.

Ibrahim, W. M., Hassan, A. F., & Azab, Y. A. (2016). Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon. Egyptian Journal of Basic and Applied Sciences, 3 (3), 241-249.

Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabougu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of Toxicology, 2018, 2568038.

Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management, 217, 56-70.

Juwarkar, A. A., Dubey, K. V., Nair, A., & Singh, S. K. (2008). Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian Journal of Microbiology, 48, 142–146.

Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28 (4), 380-394.

Li, Y., Chen, Y., Tian, X., & Chu, J. (2020). Advances in sophorolipid-producing strain performance improvement and fermentation optimization technology. Applied Microbiology and Biotechnology, 104 (24), 1-13.

Lin, Y., Chen, Y., Tian, X., & Chu, J. (2019). Rational high-throughput screening system for high sophorolipids production in Candida bombicola by co-utilizing glycerol and glucose capacity. Bioresources and Bioprocessing, 6, 17.

Lira, I. R. A. S., Santos, E. M. S., Selva Filho, A. A. P., Farias, C. B. B., Guerra, J. M. C., Sarubbo, L. A., & Luna, J. M. (2020). Biosurfactant Production from Candida guilliermondii and Evaluation of its Toxicity. Chemical Engineering, 79, 457–462.

Luna, J. M., Sarubbo, L. A., & Campos-Takaki, G. M. (2009). A new biosurfactant produced by Candida glabrata UCP 1002: characteristics of stability and application in oil recovery. Brazilian Archives of Biology and Technology, 52 (4), 785-793.

Luna, J. M., Rufino, R. D., Albuquerque, C. D. C., Sarubbo, L. A., & Campos-Takaki, G. M. (2011). Economic optimized medium for tensio-active agent production by Candida sphaerica UCP0995 and application in the removal of hydrophobic contaminant from sand. International Journal of Molecular Sciences, 12 (4), 2463-2476.

Luna, J. M., Rufino, R. D., Sarubbo, L. A., & Campos-Takaki, G. M. (2013). Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids and surfaces B: Biointerfaces, 102, 202-209.

Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2016). Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection, 102, 558-566.

Jahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Advances in Colloid and Interface Science, 275 (1), 102061.

Jimoh, A. A., & Lin, J. (2019). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety, 184, 109607.

Kanna, R. (2018). Enhanced and cost-effective biosurfactant production for marine remediation contaminated with oil spill. International Journal of Civil Engineering and Technology, 9 (7), 373-381.

Marchant, R., & Banat, I. M. (2012). Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology, 30 (11), 558-565.

Makombe, N., Gwisai, R. D. (2018). Soil remediation practices for hydrocarbon and heavy metal reclamation in mining polluted soils. The Scientific World Journal.

Marcelino, P. R. F., Gonçalves, F., Jimenez, I. M., Carneiro, B. C., Santos, B. B., & Silva, S. S. (2020). Sustainable Production of Biosurfactants and Their Applications. Lignocellulosic Biorefining Technologies.

Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy metals, 10, 115-132.

Mohanty, S. S., Koul, Y., Varkani, S., Pandey, S., Ngo, H. H., Chang, J-S., Wong, J. W.C., Bui, X-T. et al. (2021). A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microbial Cell Cactories, 20 (1), 1-13.

Moshtagh, B., Hawboldt, K., & Zhang, B. (2021). Biosurfactant production by native marine bacteria (Acinetobacter calcoaceticus P1‐1A) using waste carbon sources: Impact of process conditions. The Canadian Journal of Chemical Engineering, 99 (11), 2386-2397.

Nwaguma, I. V., Chikere, C. B., & Okpokwasili, G. C. (2019). Effect of cultural conditions on biosurfactant production by Candida sp. isolated from the sap of Elaeis guineensis. Biotechnology Journal International, 1-14.

Ostendorf, T. A., Silva, I. A., Converti, A., & Sarubbo, L. A. (2019). Production and formulation of a new low-cost biosurfactant to remediate oil-contaminated seawater. Journal of Biotechnology, 295, 71-79.

Patel, S., Homaei, A., Patil, S., & Daverey, A. (2019). Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Applied Microbiology and Biotechnology, 103 (1), 27-37.

Patil, S. B., Sawant, P., Kamble, L. H., & Raorane, C. J. (2016). Primary screening of actinomycetes in prospects with biosurfactant production from animal fat waste. International Journal Current Research in Life Sciences, 5 (2), 92-97.

Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2017). Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frontiers in Microbiology, 8, 279.

Paulelli, A. C. C., Cesila, C. A., Devóz, P. P., Oliveira, S. R., Ximenez, J. P. B., Pedreira Filho, W. R., & Barbora Jr., F. (2022). Fundão tailings dam failure in Brazil: Evidence of a population exposed to high levels of Al, As, Hg, and Ni after a human biomonitoring study. Environmental Research, 205, 112524.

Pele, M. A., Ribeaux, D. R., Vieira, E. R., Souza, A. F., Luna, M. A., Rodríguez, D. M., & Campos-Takaki, G. M. (2019). Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electronic Journal of Biotechnology, 38, 40-48.

Priji, P., Unni, K. N., Sajith, S., & Benjamin, S. (2013). Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate. Yeast, 30 (3), 103-110.

Rahman, Z., & Singh, V. P. (2020). Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environmental Science and Pollution Research International, 27 (22), 27563–27581.

Rajasimman, M. et al. (2021) Utilization of agroindustrial wastes with a high content of protein, carbohydrates, and fatty acid used for mass production of biosurfactant. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, 127-146.

Ramani, K., Jain, S. C., Mandal, A. B., & Sekaran, G. (2012). Microbial induced lipoprotein biosurfactant from slaughterhouse lipid waste and its application to the removal of metal ions from aqueous solution. Colloids and Surfaces B: Biointerfaces, 97, 254-263.

Ren, H., Zhou, S., Wang, B., Peng, L., & Li, X. (2020). Treatment mechanism of sludge containing highly viscous heavy oil using biosurfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124117.

Ribeiro, B. G., Guerra, J. M. C., & Sarubbo, L. A. (2020). Biosurfactants: Production and Application Prospects in the Food Industry. Biotechnology Progress, 36 (4), 20.

Rivera, A. D., Urbina, M. A. M., & López, V. E. L. (2019). Advances on research in the use of agro-industrial waste in biosurfactant production. World Journal of Microbiology and Biotechnology, 35 (10), 155.

Rocha Junior, R. B., Meira, H. M, Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2019). Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation, 30 (4), 215-233.

Rocha e Silva, N. M. P., Meira, H. M., Almeida, F. C. G., Soares da Silva, R. C. F., Almeida, D. G., Luna, J. M., Rufino, R. D., Santos, V. A., & Sarubbo, L. A. (2019). Natural surfactants and their applications for heavy oil removal in industry. Separation & Purification Reviews, 48 (4), 267-281.

Roelants, S. L. K. W., Saerens, K. M. J., Derycke, T., Li, B., Lin, Y-C., Van de Peer, Y., De Maeseneire, S. L., Van Bogaert, I. N.A., Soetaert, W. Candida bombicola as a platform organism for the production of tailor‐made biomolecules. Biotechnology and bioengineering, 110 (9), 2494-2503.

Sal, M. L., Diaw, A. K. D., Gningue-Sall, D., Aaron, S. E., & Aaron, J-J. (2020). Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environmental Science and Pollution Research, 27 (24), 29927-29942.

Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17 (3), 401.

Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., Salgueiro, A. A., & Sarubbo, L. A. (2013). Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. Journal of Petroleum Science and Engineering, 105, 43-50.

Santos, D. K. F., Brandão, Y. B., Rufino, R. D., Luna, J. M., Salgueiro, A. A., Santos, V. A., & Sarubbo, L. A. (2014). Optimization of cultural conditions for biosurfactant production from Candida lipolytica. Biocatalysis and Agricultural Biotechnology, 3 (3), 48-57.

Sarubbo, L. A., Brasileiro, P. P. F., Silveira, G. N. M., & Luna, J. M. (2018). Application of a low cost biosurfactant in the removal of heavy metals in soil. Chemical Engineering Transactions, 64, 433-438.

Sellami, M., Khlifi, A., Frikha, F., Miled, N., Lassaad, B., & Rebah, F. B. (2016). Agro-industrial waste based growth media optimization for biosurfactant production by Aneurinibacillus migulanus. Journal of Microbiology, Biotechnology and Food Sciences, 05 (06), 578-583.

Santos, E. M. S., Lira, I. R. A. S., Meira, H. M., Aguiar, J. S., Rufino, R. D., Almeida, D. G., Casazza, A. A., Converti, A., Sarubbo, L. A., & Luna, J. M. (2021). Enhanced oil removal by a non-toxic biosurfactant formulation. Energies, 14 (2), 467.

Silva, I. G. S., Almeida, F. C. G., Rocha e Silva, N. M. P., Oliveira, J. T. R., Converti, A., & Sarubbo, L. A. (2021). Application of green surfactants in the remediation of soils contaminated by hydrocarbons. Processes, 9 (9), 1666.

Silva, R. C. F. S., Almeida, D. G., Brasileiro, P. P. F., Rufino, R. D., Luna, J. M., & Sarubbo, L. A. 2019. Production, formulation and cost estimation of a commercial biosurfactant. Biodegradation, 30 (4), 191-201.

Singh, S., Kumar, V., Singh, S., Dhanjal, D. S., Datta, S., Sharma, D., Singh, N. K., & Singh, J. (2020). Biosurfactant-based bioremediation. In: Bioremediation of Pollutants. Elsevier, 2020, p. 333-358.

Singh, S., Kumar, V., Singh, S., Dhanjal, D. S., Datta, S., Sharma, D., Singh, N. K., & Singh, J. (2020): Biosurfactant-based bioremediation. – Bioremediation of Pollutants, Chapter 16, Elsevier, pp. 333-358.

Sitohy, M. Z., Rashad, M. M., Sharobeem, S. F., Mahmoud, A. E., Nooman, M. U., & Al Kashef, A. S. (2010). Bioconversion of soy processing waste for production of surfactants. African Journal of Microbiology Research, 4 (24), 2811-2821.

Souza, K. S. T., Gudiña, E. J., Schwan, R. F., Rodrigues, L. R., Dias, D. R., & Teixeira, J. A. (2018). Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. Journal of Hazardous Materials, 346, 152-158.

Sobrinho, B. S. H., Luna, J. M., Rufino, R. D., Porto, A. L. F., & Sarubbo, L. A. (2013). Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Electronic Journal of Biotechnology, 16 (4), 4.

Souza, K. S. T., Gudiña, E. J., Azevedo, Z., Freitas, V., Schwan, R. F., Rodrigues, L. R., Dias, D. R., & Teixeira, J. A. (2017). New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358. Colloids and Surfaces B: Biointerfaces, 154, 373-382.

Suganthi, S. H., Murshid, S., Sriram, S., & Ramani, K. (2018). Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. Journal of Environmental Management, 220, 87-95.

Suryawanshi, T., Yelmar, R., Brilhante, P., Sequiera, C., Jonhson, S., Dutt, G., Baby, B., & Martina, P. (2021). Utilisation of oil-based waste for biosurfactant production. International Journal of Environment and Sustainable Development, 20 (1), 89-104.

Tang, J., He, J., Dong, X. X., Huizhi, H., & Tian, L. T. (2018). Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chemical Engineering Journal, 334 (1), 2579-2592.

Tang, J., He, J., Liu, T., & Xin, X. (2017). Removal of heavy metals with sequential sludge washing techniques using saponin: optimization conditions, kinetics, removal effectiveness, binding intensity, mobility and mechanism. RSC advances, 7 (53), 33385-33401.

Trudgeon, B., Dieser, M., Balasubramanian, N., Messmer, M., & Foreman, C. M. (2020). Low-Temperature Biosurfactants from Polar Microbes. Microorganisms, 8 (8), 1183.

Vera, E. C. S., Azevedo, P. O. S., Domíngez, J. M., & Oliveira, R. P. S. (2018). Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochemical Engineering Journal, 133, 168-178.

Vieira, I. M. M., Santos, B. L. P., Silva, L. S., Ramos, L. C., Souza, R. R., Ruzene, D. S., & Silva, D. P. (2021). Potential of pineapple peel in the alternative composition of culture media for biosurfactant production. Environmental Science and Pollution Research, 28 (48), 1-15.

Vijayakumar, S., & Saravanan, V. (2015). Biosurfactants: types, sources and applications. Research Journal of Microbiology, 10 (5), 181.

Vosgerau, D. S. A. R., & Romanowski, J. P. (2014). Estudos de revisão: implicações conceituais e metodológicas. Revista diálogo educacional, 14(41), 165-189.

Wen, D., Fu, R., & Li, Q. (2021). Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. Journal of Hazardous Materials, 401, 123345

Williams, W., & Trindade, M. T. C. (2017). Functional Metagenomics: Tools and Applications. Springer International Publishing AG, T.C. Charles, M. R. Liles, A. Sessitsch (eds.), 253.

Yang, Z., Shi, W., Yang, W., Liang, L., Yao, W., Chai, L., Gao, S., & Liao, Q. (2018). Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils. Chemosphere, 206, 83-91.

Zambry, N. S., Rusly, N. S., Awang, M. S., Noh, N. A. M., & Yahya, A. R. M. (2021). Production of lipopeptide biosurfactant in batch and fed-batch Streptomyces sp. PBD-410L cultures growing on palm oil. Bioprocess and Biosystems Engineering, 44 (7), 1577-1592.

Zanotto, A. W., Valério, A., Andrade, C. J., & Pastore, G. M. (2019). New sustainable alternatives to reduce the production costs for surfactin 50 years after the discovery. Applied Microbiology and Biotechnology, 103 (21-22), 8647-8656.

Downloads

Published

29/03/2022

How to Cite

SILVA, R. R. da; SILVA, Y. A. da .; SILVA, T. A. de L. e .; SARUBBO, L. A. .; LUNA, J. M. de . Recent advances in environmental biotechnology: role of biosurfactants in remediation of heavy metals . Research, Society and Development, [S. l.], v. 11, n. 5, p. e4411527453, 2022. DOI: 10.33448/rsd-v11i5.27453. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27453. Acesso em: 15 jan. 2025.

Issue

Section

Review Article