Antifungal activity, antibiofilm and synergic effect of diallyl disulfide and diallyl trisulfide against Candida albicans

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27538

Keywords:

Candidiasis; Antifungal; Biofilm; Allium sativum; In silico.

Abstract

The objective of the present study was to determine the antifungal activity, antibiofilm and synergic effect of the compounds diallyl disulfide and diallyl trisulfide in combination with antifungal agents against clinical isolates of Candida albicans, including also a computational study. Antimicrobial sensitivity tests were performed using the broth microdilution method to determine the minimum inhibitory concentration against C. albicans strains and modulatory activity using the checkerboard technique. The biofilm formation was evaluated by biomass quantification using the violet crystal staining method. For the study of molecular docking computer simulations. The constituents showed relevant antifungal activity against strains of C. albicans. In the modulatory activity assay, demonstrated a synergistic interaction with fluconazole and amphotericin B, with an increase in its antifungal action. The diallyl disulfide, diallyl trisulfide and fluconazole ligands formed complexes with ALS3 enzyme. Then, both compounds were considered promising products for the development of new drugs to prevent candidiasis.

References

Aala, F., Yusuf, U. M., Khodavandi, A., & Jamal, F. (2010) In vitro antifungal activity of allicin alone and in combination with two medications against six dermatophytic fungi. Afr. J Microbiol Res 4: 380-385.

Almeida-Neto, F. W. Q., Silva, L. P., Ferreira, M. K. A., Mendes, F. R. S., Castro, K. K. A., Bandeira, P. N., Menezes, J. E. S. A., Santos, H. S., Monteiro, N. K. V., Marinho, E. S., & Lima-Neto, P. (2020) Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-{4’-[(E)-3-(Fluorophenyl)-1-(phenyl)-prop-2-en-1-one]}-acetamide. J. Mol. Struct 1220: 1-53.

Al-Snafi, A. (2013) Pharmacological effects of Allium species grown in Iraq. An overview. Int. J. Pharm. Health Care Res 1: 132-147.

An, M., Shen, H., Cao, Y., Zhang, J., Cai, Y., Wang, R., & Jiang, Y. (2009). Allicin enhances the oxidative damage effect of amphotericin B against Candida albicans. Int J Antimicrob Ag. 33, 258-263.

Ayaz, E., & Alposy, H. C. (2007). Garlic (Allium sativum) and traditional medicine. Turkiye Parazitolojii Derg. 31, 145-149.

Badal, D. S., Dwivedi, A. K., Kumar, V., Singh, S., Prakash, A., Verma, S., & Kumar, J. (2019). Effect of organic manures and inorganic fertilizers on growth, yield and its attributing traits in garlic (Allium sativum L.). J. Pharmacogn. Phytochem. 8, 587-590.

Batiha G. E. S., Beshbishy A. A., Adeyemi O. S., Nadwa E., Rashwan E., Yokoyama N., & Igarashi I. (2020). Safety and effcacy of hydroxyurea and eflornithine against most blood parasites Babesia and Theileria. PLoS ONE. 15, e0228996.

Batiha, G. E. S., Beshbishy, A. A., Tayebwa, D. S., Shaheen M. H., Yokoyama N., & Igarashi I. (2019). Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick Borne Dis. 10, 949-958.

Beshbishy A. M., Batiha G. E. S., Adeyemi O. S., Yokoyama N., & Igarashi I. (2019). Inhibitory effects of methanolic Olea europaea and acetonic Acacia laeta on the growth of Babesia and Theileria. Asian Pac. J. Trop. Med. 12, 425-434.

Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (Approved Standard. Document M27. CLSI). Third ed. vol. M27-A3. Clinical and Laboratory Standards Institute 2008a: Wayne, PA.

Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi (Approved Standard. Document M38. CLSI). Second ed. vol. M38-A2. Clinical and Laboratory Standards Institute 2008b: Wayne, PA.

Colombo A L., Guimarães T., Camargo L. F. A., Richtmann R., Queiroz-Telles F. Salles M. J. C., Cunha C. A., Yasuda M. A. S., Moretti, M. L., & Nuccii M., 2013. Brazilian guidelines for the management of candidiasis - a joint meeting report of three medical societies: Sociedade Brasileira de Infectologia, Sociedade Paulista de Infectologia and Sociedade Brasileira de Medicina Tropical. Brazilian J. Infect. Dis. 17, 283-312.

D. S. Biovia et al., “Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v.17.2, San Diego: Dassault Systèmes, 2016. J. Chem. Phys., 2000, doi: 10.1016/0021-9991(74)90010-2.

Fontenelle R. O. S., Morais S. M., Brito E. H. S., Brilhante R. S. N., Cordeiro R. A., Nascimento N. R. F., Sidrim J. J. C., & Rocha M. F. G. (2008). Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J. Appl. Microbiol. 104, 383-1390.

Fontenelle R.O.S., Morais S.M., Brito E.H.S., Kerntopf M. R., Brilhante R. S. N., Cordeiro R. A., Tomé A. R., Queiroz M. G. R., Nascimento N. R. F., Sidrim J. J. C., & Rocha M. F. G. (2007). Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. Journal of Antimicrobial Chemotherapy. 59, 934-940.

Fu Y., Phan Q. T., Luo G., Solis N. V., Liu Y., Cormack B. P., Edwards J. J., Ibrahim A.S., & Filler S. G. (2013). Investigation ofthe function of Candida albicans Als3 by heterologous expression in Candida glabrata. Infect Immun. 81, 2528-2535.

Guido, R. C., Andricopulo, A. D. & Oliva, G. (2010). Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos Avançados. 24, 81-98.

Guimaraes, D. O., Momesso, L. S., & Pupo, M. T. (2010). Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova. 33, 667-679.

Guo N., Wu X., Yu L., Liu J., Meng R., Jin J., Lu H., Wang X., Yan S., & Deng X. (2010). In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazoleresistant Candida albicans determined by alternative methods. FEMS Immunol Med Microbiol. 58, 193-201.

Guo Q., Sun S., Yu J., Li Y., & Cao L. (2008). Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods. J. Med. Microbiol. 57, 457-462.

Khodavandi A., Alizadeh F., Aala F., Sekawi Z., & Chong P. P. (2010). In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia. 169, 287-295.

Lechartier B., Hartkoorn R. C., & Cole S. T. (2012). In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 56, 5790-5793.

Lim C. S., Rosli R., Seow H. F., & Chong P. P. (2012). Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis. 31, 21-31.

Milite C., Amendola G., Nocentini A., Bua S., Cipriano A., & Barresi E. (2019). Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J. Enzyme Inhib. Med. Chem. 34, 1697-1710.

Miron T., Bercovici T., Rabinkov A., Wilchek M., & Mirelman D. (2004). [3H] Allicin: preparation and applications. Anal Biochem. 331, 364-369.

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., & Ferrin T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612.

Pfaller M. A., & Diekema D. J. (2010). Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 36, 1-53.

Phan Q. T., Myers C. L., Fu Y., Sheppard D. C., Yeaman M. R., Welch W. H., Ibrahim A. S., Edwards J. J., & Filler S. G. (2007). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5, e64.

Pierce, C. G., et al. (2013). Antifungal therapy with an emphasis on biofilms. Current Opinion in Pharmacology. 13, 1-5.

Rosato A., Vitali C., Gallo D., Balenzano L., & Mallamaci R. (2008). The inhibition of Candida species by selected essential oils and their synergism with Amphotericin B. Phytomedicine. 15, 635- 638.

Schimmel P., Tao J., & Hill J. (1998). Aminoacyl tRNA synthetases as targets for new anti‐infectives. FASEB J. 12, 1599-1609.

Shityakov S., & Förster C. (2014). In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinforma. Chem. 7, 23-36.

Silva S., Negri M., Henriques M., Oliveira R., Williams D. W., & Azeredo J. (2012). Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews. 36, 288-305.

Stepanovic S, Vukovic D, Dakic I et al., Savić B., & Švabić-Vlahović M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods. 40 (2):175-179.

Stewart J. J. P. (2013). Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19, 1-32.

Sueth-Santiago V., Franklim T. N., Lopes N. D., & Lima M. E. F. (2015). CYP51: Is it a good idea?. Rev. Virtual Quim. 7, 539-575.

Trott O., & Olson A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.

Villar C. C., Kashleva H., Nobile C. J., Mitchell A. P., & Dongari-Bagtzoglou A. (2007). Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun. 75, 2126-2135.

Wachtler B., Citiulo F., Jablonowski N., Forster S., Dalle F., Schaller M., Wilson D., & Hube B. (2012). Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS ONE. 7, 1-9.

Wachtler B., Wilson D., Haedicke K., Dalle F., & Hube B. (2011). From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS ONE. 6, 1-14.

White R. L., Burgess D. S., Manduru M., & Bosso J. A. (1996). Comparasion of three different in vitro methods of detecting synergy: Time-kill, checkerboard and E-test. Antimicrobial agents and chemotherapy. 40, 1914-1918.

Yamada Y., & Azuma K. (1977). Evaluation of the in vitro antifungal activity of allicin. Antimicrob Agents Ch. 11, 743-749.

Yusuf D., Davis A. M., Kleywegt G. J., & Schmitt S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. J. Chem. Inf. Model. 48, 1411–1422.

Zhen H., Fang F., Ye D. Y., Shu S. N., Zhou Y. F., Dong Y. S., Nie X. C., & Li G. (2006). Experimental study on the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on immediate-early genes. Antiviral Res.72, 68-74.

Downloads

Published

22/03/2022

How to Cite

PEREIRA, R.; PRADO, G. M. .; FONTENELLE, R. O. dos S. .; BARBOSA, F. C. B. .; SANTOS, H. S. dos .; MARINHO, E. S. .; MARINHO, M. M. .; MORAIS, S. M. de . Antifungal activity, antibiofilm and synergic effect of diallyl disulfide and diallyl trisulfide against Candida albicans. Research, Society and Development, [S. l.], v. 11, n. 4, p. e42111427538, 2022. DOI: 10.33448/rsd-v11i4.27538. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/27538. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences