Recycling carbon-steel waste from blast cleaning by powder metallurgy employing the augmented simplex lattice design
DOI:
https://doi.org/10.33448/rsd-v11i5.27980Keywords:
Powder metallurgy; Tap density; Blasting media waste.Abstract
Blasting cleaning is widely used to prepare and clean surfaces, but the waste resultant is generally contaminated and recycling is an obstacle. The present study shows a technical route to reuse the carbon-steel shot blast waste to produce a solid material by powder metallurgy. The waste was selected by sieve and the particles mixtures were analyzed and selected with the aid of a simplex lattice experimental design and tap density. The characterization of waste particles was conducted in terms of their morphological shape and their technological and physical characteristics. The density of green compacts and sintered samples reached 7.11 g.cm-3 and 7.06 g.cm-3, respectively. After quenching and tempering heat treatments, the sintered steel exhibited a martensitic microstructure with a hardness of 430 HV. The sintered bodies showed promising properties and the powder metallurgy method for recycling shot blast waste was considered viable.
References
Afshari, E., & Ghambari, M. (2016). Characterization of pre-alloyed tin bronze powder prepared by recycling machining chips using jet milling. Materials and Design, 103, 201–208. https://doi.org/10.1016/j.matdes.2016.04.064
Allen, E., & Iano, J. (2008). Fundamentals of Building Construction (5th ed., Vol. 1). JOHN WILEY.
Buruiana, D. L., Bordei, M., Sandu, I. G., Chirculescu, A. I., & Sandu, I. (2013). Recycling waste grit in mix asphalt. Materiale Plastice, 50(1), 36–39.
Calboreanu, G. (1991). Influence of target hardness on impact damage of shot. Wear, 150(1–2), 315–329. https://doi.org/10.1016/0043-1648(91)90326-P
German, R. M. (n.d.). Sintering : from empirical observations to scientific principles.
German, R. M. (1992). Sintering densification for powder mixtures of varying distribution widths. Acta Metallurgica Et Materialia, 40(9), 2085–2089. https://doi.org/10.1016/0956-7151(92)90125-X
Gronostajski, J., Chmura, W., & Gronostajski, Z. (2002). Bearing materials obtained by recycling of aluminium and aluminium bronze chips. Journal of Materials Processing Technology, 125–126, 483–490. https://doi.org/10.1016/S0924-0136(02)00326-6
Gronostajski, J. Z., Kaczmar, J. W., Marciniak, H., & Matuszak, A. (1998). Production of composites from Al and AlMg2 alloy chips. Journal of Materials Processing Technology, 300(3–4), 37–41.
Hinkelmann, K., & Montgomery, D. C. (2012). Design and Analysis of Experiments Eighth Edition. In Design (Vol. 48, Issue 1). https://doi.org/10.1198/tech.2006.s372
Kadir, M. I. A., Mustapa, M. S., Latif, N. A., & Mahdi, A. S. (2017). Microstructural Analysis and Mechanical Properties of Direct Recycling Aluminium Chips AA6061/Al Powder Fabricated by Uniaxial Cold Compaction Technique. Procedia Engineering, 184(4), 687–694. https://doi.org/10.1016/j.proeng.2017.04.141
Katsikaris, K., Voutsas, E., Magoulas, K., Andronikos, G., & Stamataki, S. (2002). Recyling ferrous-nickel slag in blast cleaning. Waste Management and Research, 20(3), 269–278. https://doi.org/10.1177/0734242X0202000308
Kjeldsteen, P. (1982). Recycling of cast iron swarf by the powder metallurgy technique. Materials and Design, 3(1), 335–340. https://doi.org/10.1016/0261-3069(82)90094-2
Madany, I. M., Al-Sayed, M. H., & Raveendran, E. (1991). Utilization of copper blasting grit waste as a construction material. Waste Management, 11(1–2), 35–40. https://doi.org/10.1016/0956-053X(91)90296-H
Means, J., Heath, J., Barth, E., Monlux, K., & Solare, J. (1991). The feasibility of recycling spent hazardous sandblasting grit into asphalt concrete. Studies in Environmental Science, 48(C), 553–560. https://doi.org/10.1016/S0166-1116(08)70447-3
Merkus, H. G. (2009). Particle Size Measurements. In Paper Knowledge . Toward a Media History of Documents (Vol. 17). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9016-5
Momber, A. (2008). Blast cleaning technology. In Blast Cleaning Technology (pp. 1–540). https://doi.org/10.1007/978-3-540-73645-5
Montgomery, D. C. A. S. U. (2017). D esign and Analysis of Experiments Ninth Edition. www.wiley.com/go/permissions.%0Ahttps://lccn.loc.gov/2017002355
Peccin Martins, B. (2010). Reaproveitamento De Resíduos Sólidos Das Indústrias Metal-Mecânicas Em Processos Indústrias Metal-Mecânicas Em Processos. http://hdl.handle.net/10183/35185
Prasad, P. S., & Ramana, G. V. (2016). Feasibility study of copper slag as a structural fill in reinforced soil structures. Geotextiles and Geomembranes, 44(4), 623–640. https://doi.org/10.1016/j.geotexmem.2016.03.007
R Lynn, W., & Paul Parent, W. (1996). Method of regenerating blasting media for use in pressurized device (Patent No. WO1996005021A1).
Rodriguez, J.M., Johansson, J.M.A., Edeskär, T. (2008). Particle Shape Determination by Two-Dimensional Image Analysis in Geotechnical Engineering. Site Investigation and Laboratory Testing, Eurocode 7, 1–12.
Shivpuri, R., Cheng, X., & Mao, Y. (2009). Elasto-plastic pseudo-dynamic numerical model for the design of shot peening process parameters. Materials and Design, 30(8), 3112–3120. https://doi.org/10.1016/j.matdes.2008.11.031
Simon, L., Moraes, C. A. M., Modolo, R. C. E., Vargas, M., Calheiro, D., & Brehm, F. A. (2017). Recycling of contaminated metallic chip based on eco-efficiency and eco-effectiveness approaches. Journal of Cleaner Production, 153, 417–424. https://doi.org/10.1016/j.jclepro.2016.11.058
Tauxe, R. v, McDonald, R. C., Hargrett-Bean, N., & Blake, P. A. (1988). The persistence of Shigella flexneri in the United States: increasing role of adult males. American Journal of Public Health, 78(11), 1432–1435. https://doi.org/10.2105/ajph.78.11.1432
Thümmler, Fritz., & Oberacker, R. (1993). An introduction to powder metallurgy. Institute of Materials.
Tu, Y., Xu, Z., & Wang, W. (2015). Method for evaluating packing condition of particles in coal water slurry. Powder Technology, 281, 121–128. https://doi.org/10.1016/j.powtec.2015.05.001
Wendel, J., Manchili, S. K., Hryha, E., & Nyborg, L. (2020). Reduction of surface oxide layers on water-atomized iron and steel powder in hydrogen: Effect of alloying elements and initial powder state. Thermochimica Acta, 692. https://doi.org/10.1016/j.tca.2020.178731
Yousuf, S., Sanchez, L. F. M., & Shammeh, S. A. (2019). The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry. Journal of Building Engineering, 25(October 2018), 100815. https://doi.org/10.1016/j.jobe.2019.100815
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Leonardo Meneghel; María Cristina Moré Farias; Jadna Catafesta
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.