Reciclaje de residuos de granalla de acero al carbono por granallado mediante pulvimetalurgia empleando el diseño simplex reticular aumentado
DOI:
https://doi.org/10.33448/rsd-v11i5.27980Palabras clave:
Pulvimetalurgia; Densidad compactada; Residuo de granallado.Resumen
La limpieza por granallado es ampliamente utilizada para preparar y limpiar superficies; con eso, el residuo resultante generalmente se contamina, haciendo con que el reciclaje sea un obstáculo. Esta investigación presentó una ruta técnica para reutilizar el residuo del granalla de acero al carbono para producir un material sólido a través de la pulvimetalurgia. El residuo fue seleccionado por tamices y las partículas de la mistura analizadas y seleccionadas con el auxilio del método experimental de diseño de simplex aumentado y densidad compactada. La caracterización de las partículas de residuo fue conducida por su formato morfológico y sus características tecnológicas y físicas. La densidad de los compactos verdes y muestras sinterizadas alcanzaron 7.11 g.cm-3 y 7.06 g.cm-3 respectivamente. Después de los tratamientos térmicos de templado y revenido, el acero sinterizado mostró una microestructura martensita y dureza de 430 HV. Los cuerpos sinterizados presentaron propiedades promisoras y el método de pulvimetalurgia para el reciclaje de residuo de granallado fue considerado viable.
Citas
Afshari, E., & Ghambari, M. (2016). Characterization of pre-alloyed tin bronze powder prepared by recycling machining chips using jet milling. Materials and Design, 103, 201–208. https://doi.org/10.1016/j.matdes.2016.04.064
Allen, E., & Iano, J. (2008). Fundamentals of Building Construction (5th ed., Vol. 1). JOHN WILEY.
Buruiana, D. L., Bordei, M., Sandu, I. G., Chirculescu, A. I., & Sandu, I. (2013). Recycling waste grit in mix asphalt. Materiale Plastice, 50(1), 36–39.
Calboreanu, G. (1991). Influence of target hardness on impact damage of shot. Wear, 150(1–2), 315–329. https://doi.org/10.1016/0043-1648(91)90326-P
German, R. M. (n.d.). Sintering : from empirical observations to scientific principles.
German, R. M. (1992). Sintering densification for powder mixtures of varying distribution widths. Acta Metallurgica Et Materialia, 40(9), 2085–2089. https://doi.org/10.1016/0956-7151(92)90125-X
Gronostajski, J., Chmura, W., & Gronostajski, Z. (2002). Bearing materials obtained by recycling of aluminium and aluminium bronze chips. Journal of Materials Processing Technology, 125–126, 483–490. https://doi.org/10.1016/S0924-0136(02)00326-6
Gronostajski, J. Z., Kaczmar, J. W., Marciniak, H., & Matuszak, A. (1998). Production of composites from Al and AlMg2 alloy chips. Journal of Materials Processing Technology, 300(3–4), 37–41.
Hinkelmann, K., & Montgomery, D. C. (2012). Design and Analysis of Experiments Eighth Edition. In Design (Vol. 48, Issue 1). https://doi.org/10.1198/tech.2006.s372
Kadir, M. I. A., Mustapa, M. S., Latif, N. A., & Mahdi, A. S. (2017). Microstructural Analysis and Mechanical Properties of Direct Recycling Aluminium Chips AA6061/Al Powder Fabricated by Uniaxial Cold Compaction Technique. Procedia Engineering, 184(4), 687–694. https://doi.org/10.1016/j.proeng.2017.04.141
Katsikaris, K., Voutsas, E., Magoulas, K., Andronikos, G., & Stamataki, S. (2002). Recyling ferrous-nickel slag in blast cleaning. Waste Management and Research, 20(3), 269–278. https://doi.org/10.1177/0734242X0202000308
Kjeldsteen, P. (1982). Recycling of cast iron swarf by the powder metallurgy technique. Materials and Design, 3(1), 335–340. https://doi.org/10.1016/0261-3069(82)90094-2
Madany, I. M., Al-Sayed, M. H., & Raveendran, E. (1991). Utilization of copper blasting grit waste as a construction material. Waste Management, 11(1–2), 35–40. https://doi.org/10.1016/0956-053X(91)90296-H
Means, J., Heath, J., Barth, E., Monlux, K., & Solare, J. (1991). The feasibility of recycling spent hazardous sandblasting grit into asphalt concrete. Studies in Environmental Science, 48(C), 553–560. https://doi.org/10.1016/S0166-1116(08)70447-3
Merkus, H. G. (2009). Particle Size Measurements. In Paper Knowledge . Toward a Media History of Documents (Vol. 17). Springer Netherlands. https://doi.org/10.1007/978-1-4020-9016-5
Momber, A. (2008). Blast cleaning technology. In Blast Cleaning Technology (pp. 1–540). https://doi.org/10.1007/978-3-540-73645-5
Montgomery, D. C. A. S. U. (2017). D esign and Analysis of Experiments Ninth Edition. www.wiley.com/go/permissions.%0Ahttps://lccn.loc.gov/2017002355
Peccin Martins, B. (2010). Reaproveitamento De Resíduos Sólidos Das Indústrias Metal-Mecânicas Em Processos Indústrias Metal-Mecânicas Em Processos. http://hdl.handle.net/10183/35185
Prasad, P. S., & Ramana, G. V. (2016). Feasibility study of copper slag as a structural fill in reinforced soil structures. Geotextiles and Geomembranes, 44(4), 623–640. https://doi.org/10.1016/j.geotexmem.2016.03.007
R Lynn, W., & Paul Parent, W. (1996). Method of regenerating blasting media for use in pressurized device (Patent No. WO1996005021A1).
Rodriguez, J.M., Johansson, J.M.A., Edeskär, T. (2008). Particle Shape Determination by Two-Dimensional Image Analysis in Geotechnical Engineering. Site Investigation and Laboratory Testing, Eurocode 7, 1–12.
Shivpuri, R., Cheng, X., & Mao, Y. (2009). Elasto-plastic pseudo-dynamic numerical model for the design of shot peening process parameters. Materials and Design, 30(8), 3112–3120. https://doi.org/10.1016/j.matdes.2008.11.031
Simon, L., Moraes, C. A. M., Modolo, R. C. E., Vargas, M., Calheiro, D., & Brehm, F. A. (2017). Recycling of contaminated metallic chip based on eco-efficiency and eco-effectiveness approaches. Journal of Cleaner Production, 153, 417–424. https://doi.org/10.1016/j.jclepro.2016.11.058
Tauxe, R. v, McDonald, R. C., Hargrett-Bean, N., & Blake, P. A. (1988). The persistence of Shigella flexneri in the United States: increasing role of adult males. American Journal of Public Health, 78(11), 1432–1435. https://doi.org/10.2105/ajph.78.11.1432
Thümmler, Fritz., & Oberacker, R. (1993). An introduction to powder metallurgy. Institute of Materials.
Tu, Y., Xu, Z., & Wang, W. (2015). Method for evaluating packing condition of particles in coal water slurry. Powder Technology, 281, 121–128. https://doi.org/10.1016/j.powtec.2015.05.001
Wendel, J., Manchili, S. K., Hryha, E., & Nyborg, L. (2020). Reduction of surface oxide layers on water-atomized iron and steel powder in hydrogen: Effect of alloying elements and initial powder state. Thermochimica Acta, 692. https://doi.org/10.1016/j.tca.2020.178731
Yousuf, S., Sanchez, L. F. M., & Shammeh, S. A. (2019). The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry. Journal of Building Engineering, 25(October 2018), 100815. https://doi.org/10.1016/j.jobe.2019.100815
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Leonardo Meneghel; María Cristina Moré Farias; Jadna Catafesta
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.