Total intravenous anesthesia with propofol and dexmedetomidine in bitches submitted to ovary-hysterectomy
DOI:
https://doi.org/10.33448/rsd-v11i5.28004Keywords:
Alpha-2 agonist; Intravenous Anaesthesia; Dogs; Adjuvants; Bradycardia.Abstract
Total intravenous anesthesia is widely used in dogs, and the addition of adjuvants aims to complement analgesia and reduce the doses of propofol used. This study aimed to evaluate the association of dexmedetomidine and propofol in total intravenous anesthesia in dogs. Fifteen adults, healthy bitches weighing 13.8 ±4.7 kg were selected. After premedication with acepromazine and methadone. They were allocated to two groups: GDEX (n = 8) were administered dexmedetomidine (2 µg/kg bolus + 1 µg/kg/h IV) or control GC (n = 7) with saline, and then administered propofol to both groups. The animals were maintained on propofol, adjusted to the anesthetic plane, and supplemented with 100% oxygen. The following were evaluated: induction scale, electrocardiogram, heart and respiratory rates, systolic blood pressure with Doppler, end-tidal carbon dioxide pressure, and peripheral oxygen saturation. When necessary, fentanyl (2.5 µg/kg IV) was administered. In the end, propofol rate, fentanyl consumption, surgical time, extubation, anesthetic discharge, and bleeding score were recorded. There was a mean reduction of 46% in heart rate after administration of dexmedetomidine. At the same time after induction, the systolic blood pressure was 125 ±26 mmHg in the CG compared to 148 ±42 mmHg in the GDEX. There was also a reduction of 73% in the consumption of fentanyl and 29% in the rate of propofol. Also, the visual bleeding score was higher in the GDEX. In conclusion, the association of dexmedetomidine to the protocol decreased the rate of propofol and improved the intraoperative analgesia of bitches undergoing castration.
References
Akashi, N., Murahata, Y., Kishida, H., Hikasa, Y., Azuma, K., Imagawa, T. (2020). Effects of constant rate infusions of dexmedetomidine, remifentanil and their combination on minimum alveolar concentration of sevoflurane in dogs. Veterinary Anesthesia Analgesia, 47(4), 490-498.
Bustamante, R., Canfrán, S., Segura, I. G. S., Aguado, D. (2022) Intraoperative effect of low doses of ketamine or dexmedetomidine continuous rate infusions in healthy dogs receiving propofol total intravenous anaesthesia and epidural anaesthesia: A prospective, randomised clinical study. Research in Veterinary Science, 143(1), 4-12.
Cardoso, C. G., Marques, D. R., da Silva, T. H., Mattos-Junior, E. (2014). Cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs. Veterinary Anesthesia Analgesia, 41(6), 636-643.
Cattai, A., Rabozzi, R., Ferasin, H. Isola, M., Franci, P. (2018). Haemodynamic changes during propofol induction in dogs: new findings and approach of monitoring. BMC Veterinary Research, 14(1), 282.
Covey-Crump, G. L. & Murison, P. J. (2008). Fentanyl or midazolam for co-induction of anaesthesia with propofol in dogs. Veterinary Anesthesia Analgesia, 35(6), 463-47.
Docherty, J. R. (1998). Subtypes of functional α1-and α2-adrenoceptors. European Journal of Pharmacology, 361(1), 1-15.
Ebner, L. S., Lerche, P., Bednarski, R. M., Hubbell, J. A. E. (2013). Effect of dexmedetomidine, morphine-lidocaine-ketamine, and dexmedetomidine-morphine-lidocaine-ketamine constant rate infusions on the minimum alveolar concentration of isoflurane and bispectral index in dogs. American Journal of Veterinary Research, 74(7), 963-970.
Garofalo, N. A., Teixeira Neto, F. J., Pereira, C. D. Pignaton, W., Vicente, F., Alvaides, R. K. (2012). Cardiorespiratory and neuroendocrine changes induced by methadone in conscious and in isoflurane anaesthetised dogs. Veterinary Journal, 194(3), 398-404.
Glowaski, M. M. & Wetmore L. A. (1999). Propofol: application in veterinary sedation and anesthesia. Clinical Techniques in Small Animal Practice, 14(1), 1–9.
Grasso, S. C., Ko, J. C., Weil, A. B. Paranjape, V., Constable, P. D. (2015). Hemodynamic influence of acepromazine or dexmedetomidine premedication in isoflurane-anesthetized dogs. Journal of the American Veterinary Medical Association, 246(7), 754-764.
Gutierrez-Blanco E., Victoria-Mora, J. M., Ibancovichi-Camarillo, J. Á., Sauri-Arceo, C. H., Bolio-González, M. E., Acevedo-Arcique, C. M., Marin-Cano, C., Steagall, P. V. M. (2013). Evaluation of the isoflurane-sparing effects of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketamine-dexmedetomidine during ovariohysterectomy in dogs. Veterinary Anesthesia Analgesia, 40(6), 599-609.
Hector, R. C., Rezende, M. L., Mama, K. R., Steffey, E. P., Raekallio, M. R., Vainio, O. M. (2021) Combined effects of dexmedetomidine and vatinoxan infusions on minimum alveolar concentration and cardiopulmonary function in sevoflurane-anesthetized dogs. Veterinary Anesthesia Analgesia, 48(3), 314-323.
Hector, R. C., Rezende, M. L., Mama, K. R. Steffey, E. P., Knych, H. K., Hess, A. M., Honkavaara, J. M., Raekallio, M. R., Vainio, O. M. (2017). Effects of constant rate infusions of dexmedetomidine or MK-467 on the minimum alveolar concentration of sevoflurane in dogs. Veterinary Anesthesia Analgesia, 44(4), 755-765.
Herbert, G. L., Bowlt, K. L., Ford-Fennah, V., Covey-Crump, G. L., Murrell, J. C. (2013). Alfaxalone for total intravenous anaesthesia in dogs undergoing ovariohysterectomy: a comparison of premedication with acepromazine or dexmedetomidine. Veterinary Anesthesia Analgesia, 40(2), 124-133.
Hunt, J. R., Grint, N. J., Taylor, P. M., Murrell, J. C. (2013). Sedative andanalgesic effects of buprenorphine, combined with either acepromazine or dexmedetomidine, for premedication prior to electivesurgery in cats and dogs. Veterinary Anesthesia Analgesia, 40(3), 297-307.
Kukanich, B., Clark, T. P. (2012). The history and pharmacology of fentanyl: relevance to a novel, long-acting transdermal fentanyl solution newly approved for use in dogs. Journal of Veterinary Pharmacology and Therapeutics, 35(Suppl 2), 3-19.
Kürüm, B., Pekcan, Z., Kalender, H., Kumandas, A., Mutan, O. C., Elma, E. (2013). Comparison of propofol-remifentanil and propofol-fentanyl anaesthesia during ovariohysterectomy in dogs. Kafkas Universitesi Veteriner Fakultesi Dergisi, 19(Suppl-A), 33-40.
Kuusela, E., Raekallio, M., Antilla, M., Falck, I., Mölsä, S., Vainio, O. (2000). Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs. Journal of Veterinary Pharmacology and Therapeutics, 23(1), 15-20.
Lervik, A., Haga, H. A., Ranheim, B., Spadavecchia, C. (2012). The influence of a continuous rate infusion of dexmedetomidine on the nociceptive withdrawal reflex and temporal summation during isoflurane anaesthesia in dogs. Veterinary Anesthesia Analgesia, 39(4), 414-425.
Liao, P., Sinclair, M., Valverde, A., Mosley, C., Chalmers, H., Mackenzie, S., Hanna, B. (2017). Induction dose and recovery quality of propofol and alfaxalone with or without midazolam coinduction followed by total intravenous anesthesia in dogs. Veterinary Anesthesia Analgesia, 44(5), 1016-1026.
Lin, G. Y., Robben, J. H., Murrell, J. C., Aspegrén, J., McKusick, B. C., Hellebrekers, L. J. (2008). Dexmedetomidine constant rate infusion for 24 hours during and after propofol and isoflurane anaesthesia in dogs. Veterinary Anesthesia Analgesia, 35(2), 141-153.
Maiante, A. A., Teixeira Neto, F. J., Beier, S. L., Corrente, J. E., Pedroso, C. E. B. P. (2009). Comparison of the cardio‐respiratory effects of methadone and morphine in conscious dogs. Journal of Veterinary Pharmacology and Therapeutics, v.32(4), 317-328.
Mannarino, R., Luna, S. P. L., Monteiro, E. R., Suzano, S. M. C., Bressan, T. F. (2014) Efeitos hemodinâmicos da anestesia em plano profundo com infusão intravenosa contínua de propofol ou propofol associado à lidocaína em cães. Ciência Rural, 44(2), 321-326.
Monteiro, E. R., Picoli, F. M., Queiroz, M. G., Campagnol, D., Quitzan, J. G. (2008). Efeitos sedativo e cardiorrespiratório da administração da metadona, isoladamente ou em associação à acepromazina ou xilazina, em gatos. Brazilian Journal of Veterinary Research and Animal Science, 45(4), 289-197.
Monteiro, E. R., Junior, A. R., Assis, H. M. Q., Oliveira, R. L. S., Silva, M. F. A., Coelho, K. (2009). Comparative study on the sedative effects of morphine methadone, butorphanol or tramadol, in combination with acepromazine, in dogs. Veterinary Anesthesia Analgesia, 36(1), 25-33.
Moran-Muñoz, R., Ibancovichi, J. A., Gutierrez-Blanco, E., Acevedo-Arcique, C. M., Mora, J. M. Vi., Tendillo, F. J., Santos-Gonzalez, M., Yamashita, K. (2014). Effects of lidocaine, dexmedetomidine or their combination on the minimum alveolar concentration of sevoflurane in dogs. Journal of Veterinary Medical Science, 76(6), 847-853.
Morgan, D. W. & Legge, K. (1989). Clinical evaluation of propofol as an intravenous anaesthetic agent in cats and dogs. Veterinary Record, 124(2), 31- 33.
Murrell, J. C. & Hellebrekers, L. J. (2005). Medetomidine and dexmedetomidine: a review of cardiovascular effects and antinociceptive properties in the dog. Veterinary Anesthesia Analgesia, 32(3), 117-127.
Pascoe, P. (2014). The cardiopulmonary effects of dexmedetomidine infusions in dogs during isoflurane anesthesia. Veterinary Anesthesia Analgesia, 42(4), 360-368.
Pascoe, P. J., Raekallio, M., Kuusela, E. McKusick, B., Granholm, M. (2006). Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary measurements during three continuous infusion rates of dexmedetomidine in dogs. Veterinary Anesthesia Analgesia, 33(2), 97-103.
Raffe, M. R. (2020) Total Intravenous Anesthesia for the Small Animal Critical Patient. Veterinary Clinics of North America: Small Animal Practice, 50(6), 1433-1444.
Restitutti, F., Laitinen, M. R., Raekallio, M. R., Vainionpää, M., O'Brien, R. T., Kuusela, E., Vainio, O. M. (2013). Effect of MK-467 on organ blood flow parameters detected by contrast-enhanced ultrasound in dogs treated with dexmedetomidine. Veterinary Anesthesia Analgesia, 40(6), 48-56.
Rioja, E., Gianotti, G., Valverde, A. (2013). Clinical use of a low-dose medetomidine infusion in healthy dogs undergoing ovariohysterectomy. Canadian Veterinary Journal, 54(9), 864-868.
Salmenperä, M. T., Szlam, F., Hug, C. C. J. R. (1994). Anesthetic and hemodynamic interactions of dexmedetomidine and fentanyl in dogs. Anesthesiology, 80(4), 837-846.
Seliskar, A., Zrimsek P., Sredensek J., Petrič, A. D. (2013). Comparison of high definition oscillometric and Doppler ultrasound devices with invasive blood pressure in anaesthetized dogs. Veterinary Anesthesia Analgesia, 40(1), 21–27.
Smith, C. K., Seddighi, R., Cox, S. K., Sun, X., Knyche, H. K., Doherty, T. J. (2017). Effect of dexmedetomidine on the minimum infusion rate of propofol preventing movement in dogs. Veterinary Anesthesia Analgesia, 44(6), 1287-1295.
Suarez, M., Dzikiti, B. T., Stegmann, F. G., Hartman, M. (2012). Comparison of alfaxalone and propofol administered as total intravenous anaesthesia for ovariohysterectomy in dogs. Veterinary Anesthesia Analgesia, 39(3), 236-244.
Tafur, B. L. A. (2017). The hidden world of drug interactions in anesthesia. Revista Colombiana de Anestesiología, 45(3), 216-223.
Talke, P. & Stapelfeldt, C. (2006). Effect of Peripheral Vasoconstriction on Pulse Oximetry. Journal of Clinical Monitoring and Computing, 20(5), 305-309.
Valverde, A. & Skelding, A. M. (2019). Alternatives to Opioid Analgesia in Small Animal Anesthesia. Veterinary Clinics of North America: Small Animal Practice, 49(6), 1013-1027.
Vasileiou, I., Xanthos, T., Koudouna, E., Perrea, D., Klonaris, C., Katsargyris, A., Papadimitriou, L. (2009). Propofol: A review of its non-anaesthetic effects. European Journal of Pharmacology, 605(1-3), 1-8.
Watkins, S. B., Hall, L. W., Clarke, K. W. (1987). Propofol as an intravenous anesthetic agent in dogs. Veterinary Record, 120(l4), 326-329.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gustavo Antônio Boff; Bárbara Machado Naspolini; Ana Cristina Kalb; Bruna Pires; Camila Moura de Lima; Thomas Normanton Guim; Márcia Oliveira Nobre; Martielo Ivan Gehrcke
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.