Construction of a wireless energy transmitter: Study by electromagnetic induction
DOI:
https://doi.org/10.33448/rsd-v9i7.2847Keywords:
Wireless transmission; induction; electric power; physical phenomena.Abstract
The present work aims to show that it is possible to transmit electrical energy without the need for wires using coils that, by means of electromagnetic induction, allows the transmission of electrical energy wirelessly. This study is very useful because the technologies are becoming more compact, leading to the portability of some devices such as cell phones, notebooks, smartwatch, among others; and all of these devices need to be charged in a certain period, and the possibility of transmitting electric energy wirelessly would be a great resource to facilitate the life of users who need these devices for an extended time. In addition, we will verify the effectiveness of wireless energy, possible interferences in wireless energy transmission, and the physical phenomena present in the experiment. For the construction of the wireless energy transmitter, a bibliographic study and research on ways to transmit wireless energy were carried out, and the inductive coupling between two coils was chosen, which could use easily accessible materials, where the materials used were: Enamelled wire 0 , 7mm; 4 batteries of 1.5 Volts each; 1 KPS2222a transistor; 1 Led, 1 multimeter, 1 electrical tape. To understand the physical phenomena existing in the experiment, Halliday, Rennick (2016), Nussenzveig (1997), Feynman, Leighton and Sands (2008) were used. The research approach is qualitative, being of an experimental nature, and the data collected were collected through experiments. The results obtained allow us to understand the operation of wireless energy transmission in addition to verifying the possibility of transmitting electrical energy without the need for wire. The experiment carried out, in addition to contributing to research on wireless electrical energy transmission, has pedagogical contributions in the teaching process such as: 1. Defining the magnetic flux; 2. Verify that the variation of the magnetic flux can conduct an electric current, 3. Clarify Faraday's law: that the current induced in a closed circuit is proportional to the variation of the magnetic flux, 4. Verify that it is possible to induce alternating currents. These steps reveal the scope of the laboratory activity, being evident the importance of the experience in the area of Physics.
References
C. K. Alexander; M. N. Sadiku. (2013). Fundamentos de Circuitos Elétricos. Porto Alegre: Grupo A.
M. Alonso; E. J. Finn. (1972). Física um curso universitário. São Paulo: Blucher.
Ministério da Educação. (1996). Estabelece as diretrizes e bases da Educação Nacional. Brasília.
G. A. Carlos. (2008). Métodos e técnicas de pesquisa. São Paulo: Atlas.
M. A. Cavalcante; C.R.C. Tavolaro. (2007.) Física moderna e experimental. São Paulo: Manole.
S. J. Chapman. (2013). Fundamentos de máquinas elétricas. Porto Alegre: AMGH.
R. P. Feynman; R.B. Leighton; M. Sands. (2008). Lições de física de Feynman. Porto Alegre: Bookman.
F. P. Gondim. (2010). Transmissão de energia elétrica sem fio. (Monografia). Universidade Federal do Ceara, Fortaleza.
M. Ferreira. (2014). Revista Ciência Elementar, 1-5(2).
T. K. Fraiji. (2007). Interferência entre linhas de transmissão e dutos utilizando p ATP – uma análise da LT525 KV. (Dissertação). Universidade Federal de Santa Catarina, Blumenau.
A. S. Godoy. (1995). Revista de administração de empresas, 63(2).
W. J. Goode; P. K. Hatt. (1969). Métodos em pesquisa social. São Paulo: Nacional.
D. Halliday; R. Resnick. (2016). Fundamentos da Física. Rio de Janeiro: LTC.
H. A. Haus. (1984). Waves and Fields in Optoeletronics. Prentice: Hall.
H. M. Nussenzveig. (1997). Curso de Física Básica. São Paulo: Blucher.
F. S. Kauark; F. C. Manhães; C. H. Medeiras. (2010). Metodologia da Pesquisa: um guia prático. Itabuna: Via Litterarum.
Kosow; I. Lionel. (1982). Máquinas elétricas e transformadores. Porto Alegre: Globo.
A. Motta. (2011). A importância da pesquisa na construção do conhecimento.
A. P. B. Obernizer. (2008). As equações de Maxwell e aplicações. (Monografia). Universidade Federal de Santa Catarina, Florianópolis.
A. B. K. Sambaqui; L. S. B. Marques. (2010). Apostila de eletromagnetismo. Joinville.
R. T. Silva. (2012). Revista brasileira de ensino de Física, 1-6 (4).
E. M. Reis; Otto H. M. Silva. (2013). Atividades experimentais: uma estratégia para o ensino da física, 38-35,(2).
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.