Construction of a wireless energy transmitter: Study by electromagnetic induction

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.2847

Keywords:

Wireless transmission; induction; electric power; physical phenomena.

Abstract

The present work aims to show that it is possible to transmit electrical energy without the need for wires using coils that, by means of electromagnetic induction, allows the transmission of electrical energy wirelessly. This study is very useful because the technologies are becoming more compact, leading to the portability of some devices such as cell phones, notebooks, smartwatch, among others; and all of these devices need to be charged in a certain period, and the possibility of transmitting electric energy wirelessly would be a great resource to facilitate the life of users who need these devices for an extended time. In addition, we will verify the effectiveness of wireless energy, possible interferences in wireless energy transmission, and the physical phenomena present in the experiment. For the construction of the wireless energy transmitter, a bibliographic study and research on ways to transmit wireless energy were carried out, and the inductive coupling between two coils was chosen, which could use easily accessible materials, where the materials used were: Enamelled wire 0 , 7mm; 4 batteries of 1.5 Volts each; 1 KPS2222a transistor; 1 Led, 1 multimeter, 1 electrical tape. To understand the physical phenomena existing in the experiment, Halliday, Rennick (2016), Nussenzveig (1997), Feynman, Leighton and Sands (2008) were used. The research approach is qualitative, being of an experimental nature, and the data collected were collected through experiments. The results obtained allow us to understand the operation of wireless energy transmission in addition to verifying the possibility of transmitting electrical energy without the need for wire. The experiment carried out, in addition to contributing to research on wireless electrical energy transmission, has pedagogical contributions in the teaching process such as: 1. Defining the magnetic flux; 2. Verify that the variation of the magnetic flux can conduct an electric current, 3. Clarify Faraday's law: that the current induced in a closed circuit is proportional to the variation of the magnetic flux, 4. Verify that it is possible to induce alternating currents. These steps reveal the scope of the laboratory activity, being evident the importance of the experience in the area of Physics.

Author Biographies

Antonio Marques dos Santos, Federal Institute of Rio Grande do Norte


Graduated in Full Degree in Physics - UFMA (2008). Master (2010) and Doctor (2014) in Physics - UFRN

Wellington Miranda Brasil, Federal Institute of Maranhão


Graduated in Full Degree in Physics

References

C. K. Alexander; M. N. Sadiku. (2013). Fundamentos de Circuitos Elétricos. Porto Alegre: Grupo A.

M. Alonso; E. J. Finn. (1972). Física um curso universitário. São Paulo: Blucher.

Ministério da Educação. (1996). Estabelece as diretrizes e bases da Educação Nacional. Brasília.

G. A. Carlos. (2008). Métodos e técnicas de pesquisa. São Paulo: Atlas.

M. A. Cavalcante; C.R.C. Tavolaro. (2007.) Física moderna e experimental. São Paulo: Manole.

S. J. Chapman. (2013). Fundamentos de máquinas elétricas. Porto Alegre: AMGH.

R. P. Feynman; R.B. Leighton; M. Sands. (2008). Lições de física de Feynman. Porto Alegre: Bookman.

F. P. Gondim. (2010). Transmissão de energia elétrica sem fio. (Monografia). Universidade Federal do Ceara, Fortaleza.

M. Ferreira. (2014). Revista Ciência Elementar, 1-5(2).

T. K. Fraiji. (2007). Interferência entre linhas de transmissão e dutos utilizando p ATP – uma análise da LT525 KV. (Dissertação). Universidade Federal de Santa Catarina, Blumenau.

A. S. Godoy. (1995). Revista de administração de empresas, 63(2).

W. J. Goode; P. K. Hatt. (1969). Métodos em pesquisa social. São Paulo: Nacional.

D. Halliday; R. Resnick. (2016). Fundamentos da Física. Rio de Janeiro: LTC.

H. A. Haus. (1984). Waves and Fields in Optoeletronics. Prentice: Hall.

H. M. Nussenzveig. (1997). Curso de Física Básica. São Paulo: Blucher.

F. S. Kauark; F. C. Manhães; C. H. Medeiras. (2010). Metodologia da Pesquisa: um guia prático. Itabuna: Via Litterarum.

Kosow; I. Lionel. (1982). Máquinas elétricas e transformadores. Porto Alegre: Globo.

A. Motta. (2011). A importância da pesquisa na construção do conhecimento.

A. P. B. Obernizer. (2008). As equações de Maxwell e aplicações. (Monografia). Universidade Federal de Santa Catarina, Florianópolis.

A. B. K. Sambaqui; L. S. B. Marques. (2010). Apostila de eletromagnetismo. Joinville.

R. T. Silva. (2012). Revista brasileira de ensino de Física, 1-6 (4).

E. M. Reis; Otto H. M. Silva. (2013). Atividades experimentais: uma estratégia para o ensino da física, 38-35,(2).

Published

28/04/2020

How to Cite

SANTOS, A. M. dos; BRASIL, W. M. Construction of a wireless energy transmitter: Study by electromagnetic induction. Research, Society and Development, [S. l.], v. 9, n. 7, p. e88972847, 2020. DOI: 10.33448/rsd-v9i7.2847. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/2847. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences