Production of biodegradable films from fruit and vegetable waste: an updated review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28544

Keywords:

Biodegradable Films; Edible Coatings; Industrial Waste; Environmental Impact; Sustainability.

Abstract

The food industry is one of the sectors that generate the most waste, with the greatest losses occurring in the fruit and vegetable processing chain. On the other hand, biodegradable films offer an alternative for sustainable packaging and increased food shelf life. Therefore, fruit and vegetable residues can be used in biodegradable films as a possibility of reducing production cost and industrial impact on the environment, and adding value to food by-products. Thus, the present work aimed to provide a detailed and updated literature review on the production of biodegradable films from fruit and vegetable waste from the food industry. As a result of the research, it was observed that the edible films and coatings produced from these wastes are great alternatives for food packaging, because they present physical, mechanical and structural characteristics similar or even improved than those of conventional films, besides adding antimicrobial, antioxidant and sustainable properties to the packaged products.

Author Biography

Bruna Mayara Roldão Ferreira, Universidade Estadual de Maringá

Postgraduate Program in Science Food

References

Adilah, Z. A. M., Jamilah, B., & Hanani, Z. A. N. (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocolloids, 74, 207-218.

Andrade, R. M. S., Ferreira, M. S. L., & Gonçalves, E. C. B. A. (2014). Functional capacity of flour obtained from residues of fruit and vegetables. International Food Research Journal, 21(4), 1675.

Andrade, R. M. S., Ferreira, M. S. L., & Gonçalves, É. C. B. A. (2016). Development and characterization of edible films based on fruit and vegetable residues. Journal of Food Science, 81(2), 412-418.

Andrady, A. L. & Neal, M. A. Applications and societal benefits of plastics (2009). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 1977-1984.

Associação Brasileira da Indústria do Plástico – ABIPLAST (2013). Indústria Brasileira de Transformação de Material Plástico. Perfil 2013, 15.

Associação Brasileira de Embalagens – ABRE (2019). Estudo macroeconômico da embalagem e cadeia de consumo.

Azeredo, H. M., Miranda, K. W., Rosa, M. F., Nascimento, D. M., & de Moura, M. R. (2012). Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Science and Technology, 46(1), 294-297.

Bach, C., Dauchy, X., Severin, I., Munoz, J-F., Etienne, S., & Chagnon, M. C., (2013). Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity. Food Chemistry, 139(1-4), 672-680.

Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food chemistry, 225, 10-22.

Brito, G. F, Agrawal, P., Araújo, & E. M. Mélo, T. J. A. (2011). Biopolymers, biodegradable polymers and green polymers. Revista Eletrônica de Materiais e Processo, 6(2), 127-139.

Brito, T. B., Carrajola, J. F., Gonçalves, E. C. B. A., Martelli-Tosi, M., & Ferreira M. S. L. (2019). Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International, 121, 412-421.

Cherman, K. A., Scapim, M. R. S., Silva, J. F., & Madrona, G. S. (2022). Caracterização de cobertura comestível a base de alginato e óleos essenciais. Research, Society and Development, 11 (2), 1-8.

Choi, I., Chang, Y., Shin, S., Joo, E., Song, H. J., Eom, H., & Han, J. (2017). Development of Biopolymer Composite Films using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles. International Journal of Molecular Sciences, 18, 1278.

Costa, A. S. V. (2020). Resíduos industriais como matéria prima na produção de fertilizantes e utilização no cultivo de milho e feijão. Research, Society and Development, 9(8),1–4.

Crizel, T. M., Costa, T. M. H., de Oliveira Rios, A., & Flôres, S. H. (2016). Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Industrial Crops and Products, 87, 218-228.

Crizel, T. M., Rios, A. O., Alves, V. D., Bandarra, N., Moldão-Martins, M., & Flôres, S. H. (2018). Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, 74, 139-150.

Dahiya, S., Kumar, A. N., Sravan, J. S., Chatterjee, S., Sarkar, O., & Mohan, S. V. (2018). Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresource technology, 248, 2-12.

Demichelis, F., Pleissner, D., Fiore, S., Mariano, S., Gutiérrez, I. M. N., Schneider, R., & Venus, J. (2017). Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresource technology, 241, 508-516.

Dilucia, F., Lacivita, V., Conte, A., & Del Nobile, M. A. (2020). Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods, 9(7), 857.

Du, W. X., Olsen, C. W., Avena‐Bustillos, R. J., Friedman, M., & McHugh, T. H. (2011). Physical and antibacterial properties of edible films formulated with apple skin polyphenols. Journal of Food Science, 76(2), 149-155.

Fahd, S., Fiorentino, G., Mellino, S., & Ulgiati, S. (2012). Cropping bioenergy and biomaterials in marginal land: the added value of the biorefinery concept. Energy, 37(1), 79-93.

Fai, A. E. C., de Souza, M. R. A., Barros, S. T., Bruno, N. V., Ferreira, M. S. L., & Gonçalves, É. C. B. A. (2016). Development and evaluation of biodegradable films and coatings obtained from fruit and vegetable residues applied to fresh-cut carrot (Daucus carota L.). Postharvest Biology and Technology, 112, 194-204.

FAO - Pérdidas y desperdicios de alimentos en América Latina y no Caribe (2016). Organización de las Naciones Unidas for la Alimentación y la Agricultura, 23.

Ferreira, B. M. R., Dagostin, J. L. A., de Andrade, E. F., Takashina, T. A., Ellendersen, L. S. N., Masson, M. L. (2019). Relationship Between Parameters of Development and Functional Compounds of Yacon Leaves. Brazilian Archives of Biology and Technology, 62, 1-14.

Ferreira, M. S. L., Fai, A. E. C., Andrade, C. T., Picciani, P. H., Azero, E. G., & Gonçalves, É. C. B. A. (2016). Edible films and coatings based on biodegradable residues applied to acerolas (Malpighia punicifolia L.). Journal of the Science of Food and Agriculture, 96(5), 1634-16.

Ferreira, M. S., Santos, M. C., Moro, T. M., Basto, G. J., Andrade, R. M., & Gonçalves, É. C. (2015). Formulation and characterization of functional foods based on fruit and vegetable residue flour. Journal of food science and technology, 52(2), 822-830.

Ganesh, K. S., Sridhar, A., & Vishali, S. (2021). Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities - A review. Chemosphere, 287(3), 132221.

González, C. M. O., De’Nobilia M. D., Rojasa, A. M., Basanta, M. F., & Gerschensona, L. N. (2021). Development of functional pectin edible films with fillers obtained from red cabbage and beetroot. Institute of Food Science & Technology, 56(8), 3662-69.

Guerra, M. P. Rocha, F. S.; & Nodari, R. O. (2015). Biodiversidade, Recursos Genéticos Vegetais e Segurança Alimentar em um Cenário de Ameaças e Mudanças. In: Veiga, F. R. A.; Queiróz, M. A. (Eds). Recursos Fitogenéticos: A Base da Agricultura Sustentável no Brasil. Brasília: SBRG, 39-52.

Hanani, Z. A. N., Husna, A. B. A., Syahida, S. N., Khaizura, M. A. B. N., & Jamilah, B. (2018). Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food Packaging and Shelf Life, 18, 201-211.

Henningsson, S., Hyde, K., Smith, A., & Campbell, M. (2004). The value of resource efficiency in the food industry: a waste minimisation project in East Anglia UK. Journal of Cleaner Production, 12(5), 505-512. In: Horue, M.; Berti, I. R.; Cacicedo, M. L.; & Castro, G. R. (2021). Microbial production and recovery of hybrid biopolymers from wastes for industrial applications - a review. Bioresource Technology, 340, 125671.

Infante, J.; Selani, M. M.; Toledo, N. M. V.; Silveira, M. F.; Alencar, S. M.; & Spoto, M. H. F. (2013). Atividade antioxidante de resíduos agroindustriais de frutas tropicais. Alimentos e Nutrição, 24(1), 92.

Jafarzadeh, S., Jafari, S. M., Salehabadi, A., Nafchi, A. M., Kumar, U. S. U., & Khalil, H. P. S. A. (2020). Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends in Food Science & Technology, 100, 262-277.

Jamróz, E., Tkaczewska, J., Kopec, M., & Cholewa-Wojcik, A. (2022). Shelf-life extension of salmon using active total biodegradable packaging with tea ground waste and furcellaran-CMC double-layered films. Food chemistry, 383, 132425.

Krasniewska, K.; Galus, S.; & Gniewosz, M. (2020). Biopolymers‐based materials containing silver nanoparticles as active packaging for food applications–A review. International Journal of Molecular Sciences, 21, 3.

Leitão B. & Leitão, C. S. S. (2012). Sustentabilidade e elaboração de novos produtos através do aproveitamento residual alimentar. Revista de produção Acadêmico-Científica do Ciesa, 2 (2), 97-104.

Lubis, M., Gana, A., Maysarah, S., Ginting, M. H. S., & Harahap, M. B. (2018). Production of bioplastic from jackfruit seed starch (Artocarpus heterophyllus) reinforced with microcrystalline cellulose from cocoa pod husk (Theobroma cacao L.) using glycerol as plasticizer. IOP Conference Series: Materials Science and Engineering, 309(1), 012100.

Luchese, C. L., Sperotto, N., Spada, J. C., & Tessaro, I. C., (2017). Effect of Blueberry Agro-Industrial Waste Addition to Corn Starch-Based Films for the Production of a Ph-Indicator Film. International Journal of Biological Macromolecules, 104(A), 11-18.

Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in food science & technology, 88, 207-219.

Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., & Assis, O. B. G. (2013). Effect of Chitosan Nanoparticles and Pectin Content on Mechanical Properties and Water Vapor Permeability of Banana Puree Films. Journal of Food Science, 78(1), 98-104.

Martins da Costa, J. C., Miki, K. S. L., Ramos, A. S., & Teixeira-Costa, B. E. (2020). Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon, 6, 4.

Medeiros Silva, V.D.; Coutinho Macedo, M.C.; Rodrigues, C.G.; Neris dos Santos, A.; de Freitas e Loyola, A.C.; & Fante, C.A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38, 100750.

Mihindukulasuriya, S. D. F. & Lim, L. T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science and Technology, 40(2), 149–167.

Moghadam, M., Salami, S., Mohammadian, M., Khodadadi, M., & Emam-Djomeh, Z. (2020). Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 104, 105735.

Mohamed, S. A. A.; El-Sakhawy, M.; & El-Sakhamy, M. A. M. (2020). Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, 238, 116178.

Munir, S., Hu, Y., Liu, Y., & Xiong, S. (2019). Enhanced properties of silver carp surimi-based edible films incorporated with pomegranate peel and grape seed extracts under acidic condition. Food Packaging and Shelf Life, 19, 114-120.

Nogueira, G.F.; Fakhouri, F.M.; & de Oliveira, R.A. (2019). Effect of incorporation of blackberry particles on the physicochemical properties of edible films of arrowroot starch. Dry. Technoogy, 37, 448–457.

Orsuwan, A. & Sothornvit, R. (2017). Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydrate Polymers, 174, 235-242.

Orsuwan. A. & Sothornvit, R. (2015). Effect of miniemulsion cross-linking and ultrasonication on properties of banana starch. International Journal of Food Science and Technology, 50, 298–304.

Otoni, C. G., Avena‐Bustillos, R. J., Azeredo, H. M., Lorevice, M. V., Moura, M. R., Mattoso, L. H., & McHugh, T. H. (2017). Recent advances on edible films based on fruits and vegetables - a review. Comprehensive Reviews in Food Science and Food Safety, 16(5), 1151-1169.

Park, S. & Zhao, Y., (2006). Development and Characterization of Edible Films from Cranberry Pomace Extracts. Journal of Food Science, 2, 95-101.

Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. A., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30, 681–690.

Pérez Espitia P.J., Avena‐Bustillos R.J., Du W.X., Teófilo R.F., Soares N.F.F., & McHugh T.H. (2014). Optimal antimicrobial formulation and physical‐ mechanical properties of edible films based on açaí and pectin for food preservation. Food Packag Shelf Life, 2(1), 38‐49.

Pirouzifard, M., Yorghanlu, R.A., & Pirsa, S. (2019). Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. Journal of Thermoplastic Composite Materials, 33(7), 915-937.

Pirsa, S., Mohtarami, F., & Kalantari, S. (2020). Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties. Chemical Review and Letters, 3(3), 98-103.

Priyadarshi, R.; Rhim, J. W. (2020). Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science and Emerging Technologies, 62, 102346.

Rao, P. & Rathod, V. (2019). Valorization of food and agricultural waste: a step towards a greener future. The Chemical Record, 19(9), 1858-1871.

Rodsamran, P. & Sothornvit, R. (2019). Lime peel pectin integrated with coconut water and lime peel extract as a new bioactive film sachet to retard soybean oil oxidation. Food Hydrocolloids, 97, 105173.

Rosa, N. N., Barron, C., Gaiani, C., Dufour, C., & Micard, V. (2013). Ultra-fine grinding increases the antioxidant capacity of wheat bran. Journal of Cereal Science, 57(1), 84-90.

Santos, A. M. P. & Yoshida, M. P. (2011). Técnico em Alimentos - Embalagem. Recife: UFRPE. Disponível em: http://pronatec.ifpr.edu.br/wp-content/uploads/2013/06/Embalagem.pdf.

Schwark, F. (2009). Influence factors for scenario analysis for new environmental technologies: the case for biopolymer. Technology Journal of Cleaner Production, 17(7), 644-652.

Sogut, E. & Seydim, A. C. (2018). The effects of Chitosan and grape seed extract-based edible films on the quality of vacuum packaged chicken breast fillets. Food Packaging and Shelf Life, 18, 13-20.

Souza, C. O., Silva, L. T., & Druzian, J. I. (2021). Comparative studies on the characterization of biodegradable cassava starch films containing mango and acerola pulps. Química Nova, 35(2), 262-267.

Udayakumar, G. P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Sivamani, S.; Sivakumar, N.; Maran, J. P.; Hosseini-Bandegharaei, A. (2021). Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnology Advances, 52, 107815.

Viana, R. M., Sá, N. M., Barros, M. O., de Fátima Borges, M., & Azeredo, H. M. (2018). Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees. Carbohydrate polymers, 196, 27-32.

Vodnar, D. C., Pop, O. L., Dulf, F. V. & Socaciu, C. (2015). Antimicrobial efficiency of edible films in food industry. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 302-312.

Zhang, H. & Sablani, S. (2021). Biodegradable packaging reinforced with plant-based food waste and by-products. Current Opinion in Food Science, 42, 61-68.

Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids, 94, 80-92.

Zhao, Y. & Saldaña, M. D. A. (2019). Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. The Journal of Supercritical Fluids, 143, 97-106.

Zhong, Y., Godwin, P., Jin, Y. & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research. 3(1), 27–35.

Published

15/04/2022

How to Cite

FERREIRA, B. M. R.; NEYRA, R. C. .; COSTA, J. C. M. da; BRUNI, A. R. da S.; BOLOGNESE, M. A.; VIEIRA, A. M. S. Production of biodegradable films from fruit and vegetable waste: an updated review. Research, Society and Development, [S. l.], v. 11, n. 5, p. e54311528544, 2022. DOI: 10.33448/rsd-v11i5.28544. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28544. Acesso em: 16 apr. 2024.

Issue

Section

Review Article