Citric acid production by Aspergillus spp. through submerged fermentation using different production mediums containing agroindustrial residues




Alternative medium; Biotechnological potential; Filamentous fungi; Health teaching.


The production of secondary metabolites of high added value by microorganisms has been extensively studied, mainly in the formulation of medium containing agro-industrial residues. Citric acid is a tricarboxylic organic acid obtained through submerged fermentation processes. The Aspergillus genus is considered an excellent producer of bioactive substances of industrial interest. This study aims to determine the rate of citric acid production using four strains of the microorganism (UCP 1099, 1356, 1357, and 1463) in alternative culture mediums containing citrus pomace (pineapple, orange and lemon) from the food industries in the state of Pernambuco, and to compare the results with the production obtained with the standard production medium using computational statistical tools. Assays were carried out with four samples of Aspergillus isolated from Caatinga in three conventional mediums, for 144 h, 37°C, and 180 rpm. The pH variation, sugar consumption, and citric acid production were analyzed. The results showed that the medium-called two e and the sample UCP1357, presented a citric acid production of 7.22g.L-1. After selecting the medium and the best producer microorganisms, production tests were carried out with a medium formulated with citrus fruit residues. The results revealed that all the residues produced citric acid, with the lemon peel being the best of the residues tested (6.91 g.L-1). It appears that there is a possibility of using residues in the formulation of means of production, thus contributing to the reuse of the present nutrients and the reduction of the environmental impact.


Ali, S. & Haq, I.U. (2014). Process Optimization of citric acid production from Aspergillus niger using fuzzy logic design. Pakistan Journal of Botany, 46, 3, 1055-1059.

Ashour, A., El-Sharkawy, S., Amer, M., Marzouk, A., Zaki, A., Kishikawa, A., Ohzono, M., Kondo, R., & Shimizu, K. (2014). Production of Citric Acid from Corncobs with Its Biological Evaluation. Journal Of Cosmetics, Dermatological Sciences And Applications. 10.4236/jcdsa.2014.43020.

Bier, J. M. C., Maranho, L. T., Menegassi, J. A. A., & Severo, L. S. J. (2010). Crescimento e consumo de Xilose de Candida guilliermondii na fermentação submersa utilizando-se bagaço de cana-de-açúcar. Evidência, 7, 119–130.

Bongaerts, D., Roos, J. & Vuyst, L. (2021). Technological and Environmental Features Determine the Uniqueness of the Lambic Beer Microbiota and Production Process. Applied And Environmental Microbiology. 10.1128/aem.00612-21.

Carsanba, E., Papanikolaou, S., Fickers, P., & Erten, H. (2019). Screening various Yarrowia lipolytica strains for citric acid production. Yeast, 36, 5, 319-327. 10.1002/yea.3389.

Chen, J., Shen, Y., Chen, C., Wan, C. (2019). Inhibition of key citrus postharvest fungal strains by plant extracts in vitro and in vivo: A Review. Plants. 10.3390/plants8020026.

Chikatueva, M. A., Voblikova, T. V., Abakumova, E. A., & Khramtsov, A G. (2021). Innovative Technologies in Cosmetic Industry in Development of Biotechnology of Whey-Based Concentrates. Iop Conference Series: Earth and Environmental Science, 852, 10.1088/1755-1315/852/1/012018.

Ciriminna, R., Meneguzzo, F., Delisi, R., & Pagliaro, M. (2017). Citric acid: emerging applications of key biotechnology industrial product. Chemistry Central Journal. 10.1186/s13065-017-0251-y

Das, A. J. & Kumar, R. (2018). Utilization of agroindustrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresource Technology. 10.1016/j.biortech.2018.03.093.

Ewing, G. W. (1969). Instrumental Methods of Chemical Analysis. McGraw-Hill Book Company.

Magalhães, N., Cavalcante, A. V., Andrade, L. S., Wanderleyc. R. P., Marinho, G., & Pessoa, K. A. R. (2019). Produção de ácido cítrico por Aspergillus niger AN 400 a partir de resíduo agroindustrial. Engenharia Sanitaria e Ambiental. 10.1590/s1413-41522019167153.

Marcelino, P. R. F., Gonçalves, F., Jimenez, I. M., Carneiro, B. C., Santos, B. B., & Silva, S. S. (2020). Sustainable Production of Biosurfactants and Their Applications. Lignocellulosic Biorefining Technologies, 159-183, 10.1002/9781119568858.ch8.

Marenda, F. R. B., Mattioda, F., Demiate, I. M., Francisco, A., Petkowicz, C. L. O., Canteri, M. H. G., & Amboni, R. D. M. C. (2019). Advances in Studies Using Vegetable Wastes to Obtain Pectic Substances: a review. Journal of Polymers and the Environment, 27, 549-560. 10.1007/s10924-018-1355-8.

Medeiros, A. D. M., Galdino, C. J. G., Souza, A. F., Cavalcanti, D. L., Rodrigues, D. M., Alves da Silva, C. A., & Andrade, R. F. S. (2022). Production of biosurfactant by Cunninghamella elegans UCP 0542 using food industry waste in 3 L flasks and evaluation of orbital agitation effect. Research, Society and Development. 11, 4. 10.33448/rsd-v11i4.27438.

Medeiros, A. D. M., Silva Junior, C. J. S. J., Amorim, J. D. P., Nascimento, H. A., Converti, A., Costa, A. F. S., & Sarubbo L. A. (2021). Biocellulose for Treatment of Wastewaters Generated by Energy Consuming Industries: A Review. Energies, 10.3390/en14165066.

Medeiros, A. D. M., Silva Junior, C. J. S. J., Amorim, J. D. P., Durval, I. J. B., Costa, A. F. S., & Sarubbo L. A. (2022b). Oily Wastewater Treatment: Methods, Challenges, and Trends. Processes, 10.3390/pr10040743.

Merino, C. O., Bayas-Morejon, I. F., Changoluisa, M., Lema, M. P., Gomez, C., Verdezoto, L., Moreno, I., Merino, M. C., Tigre, R. A., & Donato, W. (2019). Biotransformation of Fruti-Horticultural Agro-Industrial Residues Using Efficient Microorganisms (EM) in Riobamba (Ecuador). Journal Of Engineering and Applied Sciences, 14, 2504-2512. 10.36478/jeasci.2019.2504.2512.

Moraes, D. C., Murari, C. S., Aquino, P. L. M., Bueno, G. F., & Bianchi, V. L. D. (2012). Avaliação da fermentação aeróbia para produção de etanol a partir de xilose por linhagens de leveduras isoladas da casca de uva (Vitis spp). Revista Brasileira de Produtos Agroindustriais, 15, 117-122. 10.15871/1517-8595/rbpa.v15n2p117-122.

Ozdal, M. & Kurbanoglu, E. B. (2018). Citric Acid Production by Aspergillus niger from Agro-Industrial By-Products: Molasses and Chicken Feather Peptone. Waste And Biomass Valorization, 10.1007/s12649-018-0240-y.

Pastore, N. S., Hasan, S. M., & Zempulski, D. A. (2011). Produção De Ácido Cítrico Por Aspergillus Niger: Avaliação De Diferentes Fontes De Nitrogênio E De Concentração De Sacarose. Engevista, Toledo, 13,149-159. 10.22409/engevista.v13i3.306.

Pearce, C. J. (2019). Review of new and future developments in microbial biotechnology and bioengineering: aspergillus system properties and applications. Journal Of Natural Products, 82, 1051-1051, 10.1021/acs.jnatprod.9b00211.

Perrone, G., Stea, G., Kulathunga, C. N., Wijedasa, H., & Arseculeratne, S. N. (2013). Aspergillus fijiensis n. sp. Isolated from bronchial washings in a human case of bronchiectasis with invasive aspergillosis: the first report. Microbiology Discovery. 10.7243/2052-6180-1-9, 2013.

Prescott, S. C., & Dunn, C. G. (1949). Industrial microbiology. New York; Toronto; London: McGraw-Hill Book Co., Inc.

Ramdas, V. M., Mandree, P., Mgangira, M., Mukaratirwa, S., Lalloo, R., & Ramchuran, S. (2021). Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transportation Geotechnics. 10.1016/j.trgeo.2020.100458.

Riordon, J., Sovilj, D., Sanner, S., Sinton, D., & Young, E. W. K. (2019). Deep learning with microfluidics for biotechnology. Trends In Biotechnology, 37, 310-324. 10.1016/j.tibtech.2018.08.005.

Rodrigues, T. V. D., Amore, T. D., Teixeira, E. C., & Burkert, J. F. M. (2019). Carotenoid production by Rhodotorula mucilaginosa in Batch and Fed-Batch Fermentation Using Agroindustrial Byproducts. Food Technology and Biotechnology, 57, 388-398. 10.17113/ftb.

Romo-Buchelly, J., Rodrigues-Torres M. & Orozco-Sánchez, F. (2019). Biotechnological valorization of agroindustrial and household wastes for lactic acid production. Revista Colombiana de Biotecnología, 21, 113-127.

Saffran, M. & Denstedt, O. F. (1948). A rapid method for the determination of citric acid. Department of Biochemistry, McGill, Montreal, Canada.

Sant’anna, M. C. S., Lopes, D. F. C., Carvalho, J. B. R., & Silva, G. F. (2012). Caracterização de briquetes obtidos com resíduos da agroindústria. Revista Brasileira de Produtos Agroindustriais, 14, 289-294.

Sawant, O. (2018). Fungal citric acid production using waste materials: A Mini-Review. Journal Of Microbiology, Biotechnology And Food Sciences, 8, 821-828. 10.15414/jmbfs.2018.8.2.821-828.

Silva, C. A., Romeiro, A. L. M., Teixeira, T. V., Leite, M. J. H., Cavalcante, P. H. M., Silva, R. P. S., Justino, S. T. P., Sousa, G. G. R., Almeida, E. P., & Freitas, A. L. (2019). Soil evaluation for pineapple cultivation (ananás comosus) in the municipality of Teotônio Vilela, Alagoas. Brazilian Journal Of Development, 5, 22826-22834. 10.34117/bjdv5n11-016.

Silva, C. J. G., Medeiros, A. D. M., Amorim, J. D. P., Nascimento, H. A., Converti, A., Costa, A. F. S., & Sarubbo, L. A. (2021). Bacterial cellulose biotextiles for the future of sustainable fashion: a review. Environmental Chemistry Letters, 19, 2967-2980. 10.1007/s10311-021-01214-x.

Singer, J. L., Wilensky, H., & McCraven, V. G. (1956). Delaying capacity, fantasy, and planning ability: A factorial study of some basic ego functions. Journal of Consulting Psychology, 20(5), 375–383.

Steiger, M. G., Rassinger, A., Mattanovich, D., & Sauer, M. (2018). Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metabolic Engineering, 8, 1-29. 10.1016/j.ymben.2018.12.004

Sun, X., Wu, H., Zhao, G., Li, Z., Wu, X., Liu, H., & Zheng, Z. (2018). Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing. Bioprocess And Biosystems Engineering. 10.1007/s00449-018-1932-1.

Tong, Z., Zheng, X., Tong, Y., Shi, Y-C., & Sun, J. (2019). Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microbial Cell Factories, 18, 1-15. 10.1186/s12934-019-1064-6.




How to Cite

MEDEIROS, A. D. M. de; MEDEIROS, T. P. M. de. Citric acid production by Aspergillus spp. through submerged fermentation using different production mediums containing agroindustrial residues. Research, Society and Development, [S. l.], v. 11, n. 6, p. e8011628839, 2022. DOI: 10.33448/rsd-v11i6.28839. Disponível em: Acesso em: 28 may. 2022.