Properties of raw materials and pellets produced with blends of reforestation woods
DOI:
https://doi.org/10.33448/rsd-v11i6.29070Keywords:
Bioenergy; Biomass densification; Forest residue; Solid biofuel.Abstract
A large amount of biomass is available in Brazil, which may give an alternative for pellet production. With the market constantly growing, the search for raw materials with the potential for energy generation has become a necessity in serving sector demands. Eucalyptus sp. and Pinus sp. are the main sources of timber in Brazil. Therefore, the main objective of this study was to evaluate the quality of pellets produced with different blend proportions of Eucalyptus sp. and Pinus sp. wood particles from reforestation. The percentages of eucalyptus in relation to pine were 0, 10, 20, 50, 80 and 90%. Biomass characterization was performed. The pellets were produced in a lab-scale horizontal pelletizing matrix with a heated steam system. The pellets were evaluated for their physical, chemical, energetic and mechanical properties. The higher heating value decreased with an increasing percentage of Eucalyptus sp. in the blend. The chlorine and ash contents were within the range established by the international parameters for wood pellets. The mean mechanical durability of the produced pellets was 93%. Pellets with 80% eucalyptus and 20% pine stood out for their density, compaction rate and mechanical properties.
References
American Society For Testing Materials. (2007). ASTM D1762-84: standard method for chemical analyses of wood charcoal. ASTM International.
American Society For Testing Materials. (2004). ASTM E711-87: standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. Philadelphia: ASTM International.
Birdsey, R., Duffy, P., Smyth, C., Kurz, W. A., Dugan, A. J., & Houghton, R. (2018). Climate, economic, and environmental impacts of producing wood for bioenergy. Environmental research letters. 13 (5), 50201. 10.1088/1748-9326/aab9d5.
Carroll, J. P., & Finnan, J. (2012). Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering, 112(2), 151-159. 10.1016/j.biosystemseng.2012.03.012.
Castellano, J. M., Gómez, M., Fernández, M., Esteban, L. S., & Carrasco, J. E. (2015). Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel. 139, 629-636. 10.1016/j.fuel.2014.09.033.
Cavalett, O., Slettmo, S. N., & Cherubin, F. Energy and Environmental Aspects of Using Eucalyptus from Brazil for Energy and Transportation Services in Europe. Sustainability. 10(11), 4068. https://doi.org/10.3390/su10114068.
Cordero, T., Marquez, F., Rodriguez-Mirasol, J., & Rodriguez, J. J. (2018). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel. 11,1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5.
Demirbas, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 2(2), 183-188. https://doi.org/10.1016/S0196-8904(00)00050-9.
Deutsches Institut Für Normung, D. I. N. (2010). DIN EN 14774-1: Determination of moisture content – Oven dry method – Part 1: Total moisture – Reference method. Berlin: CEN.
Deutsches Institut Für Normung, D. I. N. (2010). DIN EN 15210-1: Solid biofuels – Determination of mechanical durability of pellets and briquettes – Part 1: Pellets. Berlim: CEN.
Escobar, J. F. (2016) A produção sustentável de biomassa florestal para energia no brasil: o caso dos pellets de madeira. Tese (Doutorado em Ciências). Universidade de São Paulo, São Paulo. https://teses.usp.br/teses/disponiveis/106/106131/tde-23032017-171758/es.php.
EU. Directive 2016/0382. Directive Of The European Parliament and Of The Council on the promotion of the use of energy from renewable sources (recast). Brussels, COM, 2016. https://ec.europa.eu/energy/sites/ener/files/documents/1_en_act_part1_v7_1.pdf.
Eufrade, H. D. J. J., Melo, R. X. D., Sartori, M. M. P., Guerra, S. P. S., & Ballarin, A.W. (2016). Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass and Bioenergy. 90, 15-21. https://doi.org/10.1016/j.biombioe.2016.03.037.
Filbakk, T., Skjevrak, G., Hoibo, O., Dibdiakova, J., & Jirjis, R. (2011). The influence of storage and drying methods for Scots pine raw material on mechanical pellet properties and production parameters. Fuel Processing Technology. 92 (5), 871-878. https://doi.org/10.1016/j.fuproc.2010.12.001.
Filbakk, T., Jirjis, R., Nurmi, J., & Hoibo, O. (2011). The effect of bark content on quality parameters of Scots Pine (Pinus sylvestris L.) pellets. Biomass and Bioenergy. 35, 3342-3349. https://doi.org/10.1016/j.biombioe.2010.09.011.
Gillespie, G. D., Everard, C. D., Fawangan, C. C., & Mcdonnell, K. P. (2013). Prediction of quality parameters of biomass pellets from proximate and ultimate analysis. Fuel. 111, 771-777. https://doi.org/10.1016/j.fuel.2013.05.002.
Gominho, J., Lourenço, A., Miranda, I., & Pereira, H. (2012). Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products. 39, 12-16. https://doi.org/10.1016/j.indcrop.2012.01.026.
Hansted, A. L. S., Nakashima, G. T., Martins, M. P., Yamamoto, H., & Yamaji, F. M. (2016). Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 184, 180-184. https://doi.org/10.1016/j.fuel.2016.06.071.
Kaliyan, N., & Morey, R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, 33(3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005.
Kaliyan, N., & Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101(3), 082-1090. https://doi.org/10.1016/j.biortech.2009.08.064.
Keene, W. C., A. A. P., Pszenny, J. M., & Galloway, H. (1986). Sea-salt corrections and interpretation of constituent ratios in marine precipitation. Journal Geophysical Research. 91(D6), 6647-6658. https://doi-org.ez26.periodicos.capes.gov.br/10.1029/JD091iD06p06647.
Larsson, S. H., Thyrel, M., Geladi, P., & Lestander, T. A. (2008). High quality biofuel pellet production from pre-compacted low density raw materials. Bioresource Technology, 99, 7176-7182. https://doi.org/10.1016/j.biortech.2007.12.065.
Li, Y., Liu, H. (2000). High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19, 177-186. https://doi.org/10.1016/S0961-9534(00)00026-X.
Maraver, A. G., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F., & Zamorano, M. (2015). Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Processing Technology. 129, 1-7. https://doi.org/10.1016/j.fuproc.2014.08.018.
Mello, W. Z. (2001). Precipitation chemistry in the coast of the Metropolitan Region of Rio de Janeiro. Brazil. Environmental Pollution. 114, 35-242. https://doi.org/10.1016/S0269-7491(00)00209-8.
Monedero, E., Portero, H., & Lapuerta, M. (2015). Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology. 132, 15-23. https://doi.org/10.1016/j.fuproc.2014.12.013.
Moon, C., Sung, Y., Ahn, S., Kim, T., Choi, G., & Kim, D. (2013). Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks. Experimental Thermal and Fluid Science. 47, 232-240. https://doi.org/10.1016/j.expthermflusci.2013.01.019.
Obernberger, I., & Thek, G. (2010). The pellet handbook: the production and thermal utilization of biomass pellet. Freedom Collection Journals. 90 (10), 3122-3122. https://doi.org/10.1016/j.fuel.2011.04.034.
Paula, L. E. R. et al. (2011). Characterization of residues from plant biomass for use in energy generation. Cerne, Lavras, 17(2), 237-246. https://www-cabdirect.ez26.periodicos.capes.gov.br/cabdirect/FullTextPDF/2011/20113257004.pdf.
Pereira, B. L. (2014). Propriedades de pellets de diferentes biomassas para fins energéticos. Tese (Doutorado em Engenharia Florestal) – Universidade Federal de Viçosa, Viçosa. https://www.locus.ufv.br/bitstream/123456789/6843/1/texto%20completo.pdf.
Pereira, B. L. C., Carneiro, A. C. O., Carvalho, A. M. M. L., Vital, B. R., Oliveira, A. C., & Canal, W. D. (2016). Influência da adição de lignina kraft nas propriedades de pellets de eucalipto. Floresta, 46(2), 235-242. 10.5380/rf.v46i2.44936.
Poddar, S. et al. (2014). Effect of compression pressure on lignocellulosic biomass pellet to improve fuel properties: higher heating value. Fuel. 131, 43-48. https://doi.org/10.1016/j.fuel.2014.04.061.
Protásio, T. P., Alves, I. C. N., Trugilho, P. F., Silva, V. O., & Baliza, A. E. R. (2011). Compactação de biomassa vegetal visando à produção de biocombustíveis sólidos. Pesquisa Florestal Brasileira. 31(68), 273-283. https://doi.org/10.4336/2011.pfb.31.68.273.
Protásio, T. P., Trugilho, P. F., Siqueira, H. F., Melo, I. C. N. A., Andrade, C. R., & Guimarães, J. B. J. (2015). Caracterização energética de pellets in natura e torrificados produzidos com madeira residual de Pinus. Pesquisa Florestal Brasileira, 35(84), 435-442. https://doi.org/10.4336/2015.pfb.35.84.843.
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Riley, J. P., Chester, R. (1971). Introduction to marine chemistry. Academic Press, London and New York. 465. 10.1016/0160-9327(72)90020-8.
Ríos-Badrán, I.M., Luzardo-Ocampo, I., García-Trejo, J.F., & Santos-Cruz, J., Gutiérrez-Antonio, C. (2020). Production and characterization of fuel pellets from rice husk and wheat straw. Renewable Energy. 145, 500-507. https://doi-org.ez26.periodicos.capes.gov.br/10.1016/j.renene.2019.06.048
Samuelsson, R., Larsson, S. H., Thyrel, M., & Lestander, T. A. (2012). Moisture content and storage time influence the binding mechanisms in biofuel wood pellets. Applied Energy. 109-115. https://doi.org/10.1016/j.apenergy.2012.05.004.
Schlesinger, W. H. (2018). Are wood pellets a green fuel? Science. 359, 1328-1329. 10.1126/science.aat2305.
Sette, C. R. J., Freitas, P. C., Freitas, V. P., Yamaji, F. M., & Almeida, R. A. (2016). Production and characterization of bamboo pellets. Bioscience journal. 32, 922-930. 10.14393/BJ-v32n4a2016-32948.
Sette, C. R. J., Hansted, A. L. S., Novaes, E., Lima, P. A. F., Rodrigues, A. C., Santos, D. R. S., & Yamaji, F. M. (2018). Energy enhancement of the eucalyptus bark by briquette production. Industrial Crops & Products, 122, 209-213. https://doi.org/10.1016/j.indcrop.2018.05.057.
Silva, S. B., Marina Arantes, D. C., Andrade, J. K. B., Andrade, C. R., Carneiro, A. C. O., & Protásio, T. P. (2020). Influence of physical and chemical compositions on the properties and energy use of lignocellulosic biomass pellets in Brazil. Renewable Energy. 147(1), 1870-1879. https://doi.org/10.1016/j.renene.2019.09.131
Siqueira, H. F. (2017). Efeito de aditivos na qualidade de pellets de madeira para uso energético. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Viçosa, Viçosa. https://locus.ufv.br//handle/123456789/21906.
Stelte, W., Holm, J. K., Sanadi, A. R., Barsberg, S., Ahrenfeldt, J., & Henriksen, U. B. (2011). A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy 35(2), 910-918.. https://doi.org/10.1016/j.biombioe.2010.11.003.
Shen, J., Zhu, S., Liu, H., Zhang, J., & Tan, J. (2010). The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion Management. 5, 983-987. https://doi.org/10.1016/j.enconman.2009.11.039.
Stumm, W., & Morgan, J. J. (1970). Aquatic Chemistry – An Introduction Emphasizing Chemical Equilibria in Natural Waters, John Wiley & Sons,583, New York. 10.1126/science.172.3988.1124-a.
Technical Association Of The Pulp and Paper Industry, T. A. P. P. I. (1997). TAPPI T 204 cm-97. Solvent extractives of wood and pulp, 4 p.
Technical Association Of The Pulp and Paper Industry, T. A. A. P. I. (2002). TAPPI. T 222 om-02. Acid-insoluble lignin in wood and pulp, 5 p.
Telmo, C., & Lousada, J. (2011). Heating values of wood pellets from different species. Biomass and Bioenergy. 35, 2634-2639. 10.1016/j.biombioe.2011.02.043.
Tumuluru, J. S. et al. (2011). A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels, Bioproducts and Biorefining. 5(6), 683-707. 10.1002/bbb.324.
Tumuluru, J. S., Conner, C. C., & Hoover, A. N. (2016). Method to produce durable pellets at lower energy consumption using high moisture corn stover and a corn starch binder in a flat die pellet mil. J. Vis. Exp., 54092. 10.3791/54092.
Van Loo, S., & Koppejan, J. (2009). Handbook of Biomass Combustion and Co-firing. Applied Energy. 2, 1-442. 10.1016/j.apenergy.2008.11.022.
Zamorano, M., Popov, V., Rodríguez, M. L., & García-Maraver, A. (2011). A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable Energy. 6(11), 3133-3140. https://doi.org/10.1016/j.renene.2011.03.020.
Whittaker, C., & Shield, I. (2017). Factors affecting wood, energy grass and straw pellet durability – a review. Renew. Sust. Energ. Rev., 71, 1-11. https://doi.org/10.1016/j.rser.2016.12.119.
Wongsiriamnuay, T., & Tippayawong, N. (2015). Effect of densification parameters on the properties of maize residue pellets. Biosystems Engineering. 139, 111-20. https://doi.org/10.1016/j.biosystemseng.2015.08.009.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nayara Tamires da Silva Carvalho; Rodrigo Simetti; Paulo Fernando Trugilho; Maria Lucia Bianchi; Mateus Alves de Magalhães; Angélica de Cássia Oliveira Carneiro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.