A new approach based on Likelihood and Euclidean Distance for the recognition of standards in methane gas
DOI:
https://doi.org/10.33448/rsd-v11i6.29236Keywords:
Biogas; Methane; Cybersystem; Likelihood; Euclidean Distance.Abstract
For some time now, natural gas that has been used as an alternative fuel in different transport vehicles, and thus, heavy vehicles such as buses and trucks, tend to reduce functional costs, reducing pollution rates to the environment. The objective of this work is to identify and classify signs of methane gas from two biomasses, one from the first phase sewage sludge and the other from the first phase sewage sludge by increasing the bovine manure inoculum, using mathematical methods applied in the analysis of clusters in the area of computer science. The theorems used in the application of this concept were that of the Euclidean and likelihood distance. For this, it will be necessary to increase concepts related to: artificial intelligence; embedded systems; and structural design of a biodigester prototype for biogas production. The result found successfully demonstrates that, through the development of the experimental scientific model of the biodigester, methane was obtained, and cluster analysis techniques were introduced for the formation of signal pattern.
References
Abonyi, J., & Feil, B., (2007), Cluster analysis for data mining and system identification: Birkhäuser Verlag AG.
Batista, X. R. F., (2017), Produção de biogás a partir de resíduos orgânicos utilizando biodigestor anaeróbico. Trabalho de Conclusão de Curso - Faculdade de Engenharia Química. Universidade Federal de Uberlândia.
De Prado, P. P. L., (2014), Probabilidade, inferência estatística e testes: utilizando matlab e excel, Editora SENAI.
De Santana, M. S. A., De Carvalho, E. C., & Callado, N. H. (2021), Influência do uso de inóculo na estimativa de gás metano dos resíduos orgânicos do aterro sanitário dos municipios do agreste alagoano, Research, Society and Development, 10 (6), 1-11. 10.33448/rsd-v10i6.15407.
Deganutti, R., Plhaci, M. C. J. P., Rossi, M., Tavares, R., & dos Santos, C., (2002), Biodigestores rurais: modelo indiano, chinês e batelada, Agência CNPTIA Embrapa.
Demirbas, A., (2010), Methane gas hydrate, Springer-Verlag.
Dos Santos, C. A. A. S., Cutrim Junior, C. F., Oliveira, L. L., da Silva, P. H. F., Maia, I. C. C. D., Nascimento, B. L. M., Serra, M. A. A. O., & Façanha Filho, P. F., Biodigestor anaeróbio para produção sustentável de biogás em propriedade rural da cidade de Açailândia, Research, Society and Development, 9 (7), 1-25. doi: 10.33448/rsd-v9i7.4262.
Epstein, E., (2003), Land application sewage sludge biosolids, New York, CRC Press.
Ferreira, L. R. A., Otto, R. B., Silva, F. P., Souza, S. N. M., Souza, S. S., & Ando Junior, O.H., (2018), Review of the energy potential of the residual biomass for the distributed generation in Brazil, Renewable and Sustainable Energy Reviews, 94(1), 440-455. 10.1016/j.rser.2018.06.034.
Guebitz, G.M., Bauer, A., Bochmann, G., Gronauer, A., & Weiss, S., (2015), Biogas science and technology, Switzerland, Springer International Publishing.
Holman, J.O., (2012), Experimental methods for engineers, (8a ed.), McGraw-Hill.
Iwaki, G., (2018), Destinação Final de Lodos de ETAs e ETEs, Portal Tratamento de Agua.
Kaufman, L., & Rousseeuw, P. J., (1990), Finding groups in data: an introduction to cluster analysis, John Wiley & Sons.
Laughton, M. A., (1990), Renewable energy sources, Savoy Hill, The Watt Committee on Energy.
Mito, J. Y. L., Kerkhoff, S., Silva, J. L. G., Vendrame, M. G., Steinmetz, R. L. R., & Kunz, A., (2018), Metodologia para estimar o potencial de biogás e biometano a partir de plantéis suínos e bovinos no Brasil, Concórdia: Embrapa Suínos e Aves.
Montgomery, D. C., & Runger, G. C., (2003), Applied statistics and probability for engineers, (3a ed.), John Wiley & Sons.
Moraes, S. L., Massola, C. P., Saccoccio, E. M., Silva, D.P, & Guimarães, Y. B. T., (2017), Cenário brasileiro da geração e uso de biomassa adensada, Revista IPT, 1(4), 58-73.
Reay, D., Smith, P., & Van Amstel, A., (2010), Methane and climate change, Dunstan House, Earthscan Ltd.
Roe, B. P., (2001), Probability and statistics in experimental physics, (2a ed.), Springer-Verlag.
Sacomano, J. B., Gonçalves, R. F., da Silva, M. T., Bonila, S. H., & Sátyro, W. C., (2018), Industria 4.0: conceitos e fundamentos, Editora Blucher.
Tabatabaei, M., & Ghanavati, H., (2018), Biogas: fundamentals, process, and operation: Springer International Publishing.
Van Basshuysen, R., (2016), Natural gas and renewable methane for powertrains: future strategies for a climate-neutral mobility: Springer International.
Wellinger, A., Murphy, J., & Baxter, D., (2013), The biogas handbook: science, production and applications: Woodhead Publishing.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Caroline Lyra Dias; Roberto Outa; Fábio Roberto Chavarette; Aparecido Carlos Gonçalves; Adriana Garcia; Sandro da Silva Pinto; Luiz Gustavo Pereira Roefero
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.