Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29579

Keywords:

Electric Power Generation; Renewable Energy; Forecast models.

Abstract

Brazil went through a period of energy crisis in the last year of 2021, due to low rivers that supply hydroelectric plants, being forced to activate thermal plants to supply electricity to the Brazilian population. This energy crisis brings several negative aspects, which can be avoided or partially avoided with the use of forecasts that can help in the decision making by the Electric Energy System Operators. Within this perspective, this work has as main objective to predict the generation of renewable electricity in the state of Ceará (CE) in a period of three days ahead, through the Prophet prediction model, an algorithm used on a large scale by the social network Facebook, using electricity generation data extracted from the website of the National System Operator (ONS). Data were collected from November 1, 2018 to March 1, 2021, totaling 852 measurements considering daily intervals. The forecasts were evaluated by the model evaluation metrics: RMSE, MSE and MAPE. The data was divided into 75% training data and 25% testing data. As a result, it was observed that the model obtained an error of 5.5% taking into account the MAPE metric.

References

Aslam, S., Herodotou, H., Ayub, N., & Mohsin, S. M. (2019). Deep Learning based Techniques to Enhance the Performance of Microgrids: A Review. International Conference on Frontiers of Information Technology (FIT).

Associação Brasileira de Energia Solar (ABSOLAR). Novembro de 2021. A partir de https://www.absolar.org.br/noticias/.

Associação Brasileira de Energia Eólica (ABEOLICA). Outubro de 2021. A partir de https://abeeolica.org.br/category/noticias/agencia-abeeolica/.

Câmara Comercializadora de Energia Elétrica (CCEE). Fevereiro de 2022. A partir de https://www.ccee.org.br/pt/web/guest/-/ccee-somava-12.240-agentes-ao-final-de-2021-14-a-mais-do-que-em-dezembro-de-2020#:~:text=A%20C%C3%A2mara%20de%20Comercializa%C3%A7%C3%A3o%20de,mercados%20de%20energia%20no%20pa%C3%ADs.

Divya, R., Gopika, N. P., & Manjula, G. N. (2019 ). ANN Based Solar Power Forecasting in a Smart Microgrid System for Power Flow Management” Innovations in Power and Advanced Computing Technologies.

Energia Eólica: Os bons ventos do Brasil. Novembro de 2021, a partir de http://abeeolica.org.br/wp-content/uploads/2021/11/2021_11_InfoVento23.pdf.

Escassez Hídrica. Operador Nacional do Sistema Elétrico. Setembro de 2021, a partir de http://www.ons.org.br/Paginas/Noticias/20210707-escassez-hidrica-2021.aspx.

Energia fotovoltaica: por que essa tecnologia vai brilhar cada vez mais. (2022). ABSOLAR. Março de 2022, a partir de https://www.absolar.org.br/noticia/energia-fotovoltaica-por-que-essa-tecnologia-vai-brilhar-cada-vez-mais/.

Gartner Top Strategic Technology Trends for 2021. Gartner. Setembro de 2021, a partir de https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021.

Haida, T., Muto, S. (1994). Regression based peak load forecasting using a transformation technique. Power Systems. IEEE Transactions.

Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Elsevier. Solar Energy 195, 703–72.

Lyla, Y. 2019. Um Início Rápido da Previsão de Séries Temporais com um Exemplo Prático usando o FB Prophet.

Ludermir, T. B. (2021). Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências. DOI: 10.1590/s0103-4014.2021.35101.007.

Khan, S., Paul, D., Momtahan, P., & Aloqaily, M. (2018). Artificial Intelligence Framework for Smart City Microgrids: State of the art, Challenges, and Opportunities. Third International Conference on Fog and Mobile Edge Computing (FMEC).

Métricas de avaliação para séries temporais. (2021). Alura. Junho de 2021, a partir de https://www.alura.com.br/artigos/metricas-de-avaliacao-para-series-temporais.

Mehrzadi, M., Terriche, Y., Su, C., Xie, P., Bazmohammadi, N., Costa, M. N., Liao, C., Vasquez, J. C., & Guerrero, J, M. 2020. A Deep Learning Method for Short-Term Dynamic Positioning Load Forecasting in Maritime Microgrids. Appl. Sci. 4889.

Ni, C., Ma, X., & Bai, Y. (2018). Convolutional Neural Network based power generation prediction of wave energy converter. Proceedings of the 24th International Conference on Automation & Computing, Newcastle University, Newcastle upon Tyne, UK, 6-7 September.

Nordeste Registra em Julho Dez Recordes de Energia Renovável. Operador Nacional do Sistema Elétrico. Setembro de 2021, a a partir de http://www.ons.org.br/Paginas/Noticias/20210804-nordeste-registra-em-julho-dez-recordes-de-geracao-renovavel.aspx.

Operador Nacional do Sistema. Novembro de 2021(a) a partir de http://www.ons.org.br/

Operador Nacional do Sistema. Nordeste registra em julho dez recordes de energia renovável. Julho de 2021(b) a partir de http://www.ons.org.br/Paginas/Noticias/20210804-nordeste-registra-em-julho-dez-recordes-de-geracao-renovavel.aspx#:~:text=O%20segundo%20semestre%20chegou%20trazendo,energia%20oriundos%20de%20fontes%20renov%C3%A1veis.

Pinto, L. I. C., Martins, F. R., & Pereira, E. B. (2017). O mercado brasileiro da energia eólica, impactos sociais e ambientais. Ambiente & Água - An Interdisciplinary Journal of Applied Science, ISSN 1980-993X – doi:10.4136/1980-993X.

Proposta conceitual para a Abertura do Mercado. (2021). CCEE- Câmara de Comercialização de Energia Elétrica. Setembro de 2021, a partir de https://static.poder360.com.br/2021/11/proposta-conceitual-abertura-mercado-livre.pdf.

Panorama da solar fotovoltaica no Brasil e no mundo. Novembro de 2021, a partir de https://www.absolar.org.br/mercado/infografico/.

Soares, M. A., & Costa, H. K. M. (2022). The Brazil’s power distribution utililites: anassessment about hydro crisisin 2001 and 2021. Conjecturas, ISSN: 1657-5830, Vol. 22, Nº 2.

Taylor, S. J., & Letham, B. (2017). Forecasting at scale. PeerJ Preprints 5:e3190v2. doi.org/10.7287/peerj.preprints.3190v2.

Veiga, R. Q., Lucena, A. J., & Wanderley, H. S. (2022). Influences of El Niño on the distribution of rainfall in the city of Rio de Janeiro. RA’EGA, O espaço geográfico em análise, Curitiba, PR, V.53, n.2, p.22–47.

Published

18/05/2022

How to Cite

SILVA, F. E. M. da .; OLIVEIRA, L. M. de .; ANTUNES, F. L. M. .; SÁ JUNIOR, E. M. Short-term renewable electric energy generation forecast in the state of Ceará using prophet regression . Research, Society and Development, [S. l.], v. 11, n. 7, p. e12711729579, 2022. DOI: 10.33448/rsd-v11i7.29579. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29579. Acesso em: 12 nov. 2024.

Issue

Section

Engineerings