Pronóstico generación de energia eléctrica renovable a corto plazo en el estado de Ceará mediante modelo de regresión prophet

Autores/as

DOI:

https://doi.org/10.33448/rsd-v11i7.29579

Palabras clave:

Generación de Electricidad; Energías Renovables; Modelos de pronóstico.

Resumen

Brasil atravesó un período de crisis energética en el último año de 2021, debido al bajo nivel de los ríos que abastecen a las centrales hidroeléctricas, viéndose obligado a activar centrales térmicas para abastecer de electricidad a la población brasileña. Esta crisis energética trae varios aspectos negativos, que pueden ser evitados o evitados parcialmente con el uso de pronósticos que pueden ayudar en la toma de decisiones por parte de los Operadores del Sistema de Energía Eléctrica. En esa perspectiva, este trabajo tiene como principal objetivo predecir la generación de energía eléctrica renovable en el estado de Ceará (CE) en un plazo de tres días, a través del modelo de predicción Prophet, un algoritmo utilizado a gran escala por la red social Facebook, utilizando datos de generación eléctrica extraídos del sitio web del Operador Nacional del Sistema (ONS). Los datos fueron recolectados del 1 de noviembre de 2018 al 1 de marzo de 2021, totalizando 852 mediciones considerando intervalos diarios. Los pronósticos fueron evaluados por las métricas de evaluación del modelo: RMSE, MSE y MAPE. Los datos se dividieron en un 75 % de datos de entrenamiento y un 25 % de datos de prueba. Como resultado se observó que el modelo obtuvo un error del 5,5% teniendo en cuenta la métrica MAPE.

Citas

Aslam, S., Herodotou, H., Ayub, N., & Mohsin, S. M. (2019). Deep Learning based Techniques to Enhance the Performance of Microgrids: A Review. International Conference on Frontiers of Information Technology (FIT).

Associação Brasileira de Energia Solar (ABSOLAR). Novembro de 2021. A partir de https://www.absolar.org.br/noticias/.

Associação Brasileira de Energia Eólica (ABEOLICA). Outubro de 2021. A partir de https://abeeolica.org.br/category/noticias/agencia-abeeolica/.

Câmara Comercializadora de Energia Elétrica (CCEE). Fevereiro de 2022. A partir de https://www.ccee.org.br/pt/web/guest/-/ccee-somava-12.240-agentes-ao-final-de-2021-14-a-mais-do-que-em-dezembro-de-2020#:~:text=A%20C%C3%A2mara%20de%20Comercializa%C3%A7%C3%A3o%20de,mercados%20de%20energia%20no%20pa%C3%ADs.

Divya, R., Gopika, N. P., & Manjula, G. N. (2019 ). ANN Based Solar Power Forecasting in a Smart Microgrid System for Power Flow Management” Innovations in Power and Advanced Computing Technologies.

Energia Eólica: Os bons ventos do Brasil. Novembro de 2021, a partir de http://abeeolica.org.br/wp-content/uploads/2021/11/2021_11_InfoVento23.pdf.

Escassez Hídrica. Operador Nacional do Sistema Elétrico. Setembro de 2021, a partir de http://www.ons.org.br/Paginas/Noticias/20210707-escassez-hidrica-2021.aspx.

Energia fotovoltaica: por que essa tecnologia vai brilhar cada vez mais. (2022). ABSOLAR. Março de 2022, a partir de https://www.absolar.org.br/noticia/energia-fotovoltaica-por-que-essa-tecnologia-vai-brilhar-cada-vez-mais/.

Gartner Top Strategic Technology Trends for 2021. Gartner. Setembro de 2021, a partir de https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021.

Haida, T., Muto, S. (1994). Regression based peak load forecasting using a transformation technique. Power Systems. IEEE Transactions.

Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M., & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Elsevier. Solar Energy 195, 703–72.

Lyla, Y. 2019. Um Início Rápido da Previsão de Séries Temporais com um Exemplo Prático usando o FB Prophet.

Ludermir, T. B. (2021). Inteligência Artificial e Aprendizado de Máquina: estado atual e tendências. DOI: 10.1590/s0103-4014.2021.35101.007.

Khan, S., Paul, D., Momtahan, P., & Aloqaily, M. (2018). Artificial Intelligence Framework for Smart City Microgrids: State of the art, Challenges, and Opportunities. Third International Conference on Fog and Mobile Edge Computing (FMEC).

Métricas de avaliação para séries temporais. (2021). Alura. Junho de 2021, a partir de https://www.alura.com.br/artigos/metricas-de-avaliacao-para-series-temporais.

Mehrzadi, M., Terriche, Y., Su, C., Xie, P., Bazmohammadi, N., Costa, M. N., Liao, C., Vasquez, J. C., & Guerrero, J, M. 2020. A Deep Learning Method for Short-Term Dynamic Positioning Load Forecasting in Maritime Microgrids. Appl. Sci. 4889.

Ni, C., Ma, X., & Bai, Y. (2018). Convolutional Neural Network based power generation prediction of wave energy converter. Proceedings of the 24th International Conference on Automation & Computing, Newcastle University, Newcastle upon Tyne, UK, 6-7 September.

Nordeste Registra em Julho Dez Recordes de Energia Renovável. Operador Nacional do Sistema Elétrico. Setembro de 2021, a a partir de http://www.ons.org.br/Paginas/Noticias/20210804-nordeste-registra-em-julho-dez-recordes-de-geracao-renovavel.aspx.

Operador Nacional do Sistema. Novembro de 2021(a) a partir de http://www.ons.org.br/

Operador Nacional do Sistema. Nordeste registra em julho dez recordes de energia renovável. Julho de 2021(b) a partir de http://www.ons.org.br/Paginas/Noticias/20210804-nordeste-registra-em-julho-dez-recordes-de-geracao-renovavel.aspx#:~:text=O%20segundo%20semestre%20chegou%20trazendo,energia%20oriundos%20de%20fontes%20renov%C3%A1veis.

Pinto, L. I. C., Martins, F. R., & Pereira, E. B. (2017). O mercado brasileiro da energia eólica, impactos sociais e ambientais. Ambiente & Água - An Interdisciplinary Journal of Applied Science, ISSN 1980-993X – doi:10.4136/1980-993X.

Proposta conceitual para a Abertura do Mercado. (2021). CCEE- Câmara de Comercialização de Energia Elétrica. Setembro de 2021, a partir de https://static.poder360.com.br/2021/11/proposta-conceitual-abertura-mercado-livre.pdf.

Panorama da solar fotovoltaica no Brasil e no mundo. Novembro de 2021, a partir de https://www.absolar.org.br/mercado/infografico/.

Soares, M. A., & Costa, H. K. M. (2022). The Brazil’s power distribution utililites: anassessment about hydro crisisin 2001 and 2021. Conjecturas, ISSN: 1657-5830, Vol. 22, Nº 2.

Taylor, S. J., & Letham, B. (2017). Forecasting at scale. PeerJ Preprints 5:e3190v2. doi.org/10.7287/peerj.preprints.3190v2.

Veiga, R. Q., Lucena, A. J., & Wanderley, H. S. (2022). Influences of El Niño on the distribution of rainfall in the city of Rio de Janeiro. RA’EGA, O espaço geográfico em análise, Curitiba, PR, V.53, n.2, p.22–47.

Publicado

18/05/2022

Cómo citar

SILVA, F. E. M. da .; OLIVEIRA, L. M. de .; ANTUNES, F. L. M. .; SÁ JUNIOR, E. M. Pronóstico generación de energia eléctrica renovable a corto plazo en el estado de Ceará mediante modelo de regresión prophet. Research, Society and Development, [S. l.], v. 11, n. 7, p. e12711729579, 2022. DOI: 10.33448/rsd-v11i7.29579. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29579. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías