Optimization of screen dewatering through dynamic control of frequency
DOI:
https://doi.org/10.33448/rsd-v11i7.29823Keywords:
Moisture; Iron; Ore; Mineral; Processing; Screening; Particle; Classification.Abstract
This paper is intended to explore how changing the frequency of industrial screens processing the dewatering of an iron ore bulk influences the final moisture content. Screen dewatering of particulate systems in size range between 150 μm and 1000 μm, from iron ore, was studied in an industrial environment. The oscillating dewatering screen employed has effective dimensions of 4.2 m long by 1.8 m wide. The screen frequency was controlled by a frequency inverter in the electric circuit of the motor drive. A reduction in the final cake moisture was observed by reducing the frequency. Furthermore, differences between the intrinsic oscillation parameters of the bulk material and that of the oscillatory electromechanical system were detected. To achieve this controlled variation of the frequency levels followed, initially, a continuous level regime (30 minutes per condition), and, later, a sinusoidal and a stepped (squared form at 30 seconds per level) regime. The adoption of the sinusoidal and stepped regime allowed the matching of the same vibrational parameters of the particulate bed with those of the screen, leading to a reduction in the moisture content in the final cake.
References
Bento L. T., & Vimieiro, C. B. S. (2021). Analysis of the dynamic forces acting on a vibrating screen and its support structure using a scale model. Measurement, 176, 109179. https://doi.org/10.1016/j.measurement.2021.109179
Ettmayr, A., Stahl, W., Keller, K., & Sauer, G. (2000). Dewatering of fine granular materials by vibrating screens with superposed capillary suction. Developments in Mineral Processing. https://doi.org/10.1016/s0167-4528(00)80035-6
Ettmayr, A., & Stahl, W. (2017). Vibrational dewatering improvement by superposed capillary suction. Mineral Processing on the Verge of the 21st Century. https://doi.org/10.4324/9780203747117-116
Fang, T., Chen, W., Plinke, J., Wheeler, C., & Roberts, A. (2019). Study of the wall adhesive tensile contact of moist iron ore bulk solids. Particuology 50, 67 – 75.
Ferreira, R. F. (2019). Modelos para a previsão do limite de umidade para transporte marítimo de finos de minério de ferro – TML [Thesis, in Portuguese]. Ouro Preto: Escola de Minas da UFOP, 287 p.
Gonçalves, P. C., & Luz, J. A. (2022). Method for quick assessment of cohesive ore flowability. Research, Society and Development, 11(7) [in press].
Herath, B., Albano, C., Anttila, A., & Flykt, B. (1992). Empirical modelling of a dewatering process using multivariate data analysis. Filtration & Separation, 29(1), 57– 44. https://doi.org/10.1016/0015-1882(92)80305-3
Iizuka, E. K. (2006). Análise de tensões em peneiras vibratórias através de modelagem numérica utilizando o método dos elementos finitos e experimentalmente por extensometria. Campinas: Universidade Estadual de Campinas.
Jahani, M., A. Farzanegan, A., & Noaparast, M. (2015). Investigation of screening performance of banana screens using LIGGGHTS DEM solver. Powder Technology 283, 32 – 47.
Jiang, H., Zhao, Y., Duan, C., Liu, C., Wu, J., Diao, H., Lv, P., & Qiao, J. (2017). Dynamic characteristics of an equal-thickness screen with a variable amplitude and screening analysis. Powder Technology, 311, 239 – 246. https://doi.org/10.1016/j.powtec.2017.01.022
Keller, K., & Stahl, W. (1994). Vibration dewatering. Chemical Engineering and Processing: Process Intensification, 33(5), 331 – 336. https://doi.org/10.1016/0255-2701(94)02004-3
Liu, Y., Zhang, Z., Liu, X., Wang, L., & Xia, X. (2021). Ore image classification based on Small Deep Learning Model: Evaluation and optimization of model depth, model structure and data size. Minerals Engineering, 172, 107020. https://doi.org/10.1016/j.mineng.2021.107020
Marín-Rivera, R., Koltsov, A., Araya Lazcano, B., & Douce, J.-F. (2017). Wettability in water/iron ore powder systems: To the universality of the Cassie model. International Journal of Mineral Processing, 162, 36 – 47. https://doi.org/10.1016/j.minpro.2017.02.016
Milhomen, F. de O. (2013). Modelagem de desaguamento em peneira [Dissertation, in Portuguese]. Ouro Preto: Escola de Minas da UFOP, 147 p.
Milhomen, F. de O., & Luz, J. A. M. (2012). Modelling of Dewatering in Screens. In: XIIIth International Mineral Processing Symposium, 2012, Bodrum. Proceedings of XIIIth International Mineral Processing Symposium, 2012 — Bodrum, Turkey. Eskişehir: Eskişehir Osmangazi University. v. 1. p. 893-901.
Mohajeri, M. J., van den Bos, M. J., van Rhee, C., & Schott, D. L. (2020). Bulk properties variability and interdependency determination for cohesive iron ore. Powder Technology, 367, 539-557. https://doi.org/10.1016/j.powtec.2020.04.018
Nabawy, B. S. (2014). Estimating porosity and permeability using digital image analysis (DIA) technique for highly porous sandstones. Arabian Journal of Geosciences, v. 7, p. 889 – 898.
Plinke, J., Prigge, J.-D., & Williams, K. C. (2016). Development of new analysis methods for the characterization and classification of wet sticky ores. Powder Technology, 294, 252 – 258. https://doi.org/10.1016/j.powtec.2016.02.044
Pourmahmood, M., Khanmohammadi, S., & Alizadeh, A. (2011). Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Communication Nonlinear Science Numerical Simulation 16 , 2853 – 2868.
Prado, D. R., da Luz, J. A. M., Milhomem, F. de O., & Paracampos, M. P. (2022). On bed porosity of multisized spheroidal particles/da porosidade de partículas esferoidais polidispersas. Brazilian Journal of Development, 8(2), 14217–14237. https://doi.org/10.34117/bjdv8n2-378
São José, F. de; Teixeira Junior, M. L., & Pereira, C. A. (2017). Análise de rota de peneiramento de minério de ferro na ITM da Namisa S.A — Um estudo de caso. Holos, vol. 4, pp. 299-307 .
Silva, A. P., & Macau, E. E. N. (2012). Sincronização de fase em Sistemas de Osciladores Acoplados. In: XII Workshop de Computação Aplicada - WORCAP 2012. Available at: http://mtc-m16c.sid.inpe.br/ibi/8JMKD3MGP8W/3D9Q6EP; Access: May, 1st. 2022.
Sousa, R., Futuro, A., Fiúza, A., & Mário Machado Leite (2020). Pre-concentration at crushing sizes for low-grade ores processing — Ore macro texture characterization and liberation assessment. Minerals Engineering 147 (2020) 106156.
Srikakulapu, N. G., Cheela, S. S., Bari, V. K., Mukherjee, A. K., & Bhatnagar, A. K. (2021). Effect of polymer flow AIDS on LD iron ore flowability. Powder Technology, 377, 523 – 533. https://doi.org/10.1016/j.powtec.2020.09.023
Wakeman, R. J., & Tarleton, S. (2005). Solid-liquid separation: Principles of industrial filtration. Elsevier.
Yu, C., Wang, X., Pang, K., Zhao, G., & Sun, W. (2020). Dynamic characteristics of a vibrating flip-flow screen and analysis for screening 3 mm iron ore. Shock and Vibration, 2020, 1 – 12. https://doi.org/10.1155/2020/1031659
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Altieres Marçal Frade; José Aurélio Medeiros da Luz
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.