Otimização de desaguamento por peneira via controle dinâmico da frequência

Autores

DOI:

https://doi.org/10.33448/rsd-v11i7.29823

Palavras-chave:

Umidade; Minério; Ferro; Processamento; Mineral; Classificação; Partículas.

Resumo

Neste trabalho pretende-se explorar como a alteração da frequência de peneiras industriais processando o desaguamento de um granel de minério de ferro influencia na umidade final. Desaguamento por peneiramento de granéis bitolados entre 150 μm e 1000 μm e oriundos de minério de ferro foi estudado em usina industrial. A peneira desaguadora oscilatória empregada tem dimensões efetivas de 4,2 m de comprimento por 1,8 m de largura. A frequência da peneira era controlada por inversor de frequência no circuito elétrico de acionamento do motor. Observou-se a redução da umidade da torta final com a alteração da frequência. Ademais, diferenças entre os parâmetros de oscilação intrínseca do leito de granéis e a do sistema eletromecânico oscilatório foram detectadas. A variação controlada dos níveis de frequência seguiu, inicialmente, regime de patamares contínuos (30 minutos por condição), e, posteriormente, regime senoidal e regime de função tipo degrau (30 segundos por condição). A adoção do regime senoidal e em degrau permitiu o sincronismo dos parâmetros oscilatórios do leito de granéis levando à redução da umidade final da torta.

Biografia do Autor

Altieres Marçal Frade, Federal University of Ouro Preto

Engenheiro de Processo na Vale S.A.; Mestre em Ciências em engenharia.
Especialidades: Sistemas Mínero-Metalúrgicos (Processos relacionados à produção de minério de ferro — Prospecção/Tratamento/Porto exportação)

Referências

Bento L. T., & Vimieiro, C. B. S. (2021). Analysis of the dynamic forces acting on a vibrating screen and its support structure using a scale model. Measurement, 176, 109179. https://doi.org/10.1016/j.measurement.2021.109179

Ettmayr, A., Stahl, W., Keller, K., & Sauer, G. (2000). Dewatering of fine granular materials by vibrating screens with superposed capillary suction. Developments in Mineral Processing. https://doi.org/10.1016/s0167-4528(00)80035-6

Ettmayr, A., & Stahl, W. (2017). Vibrational dewatering improvement by superposed capillary suction. Mineral Processing on the Verge of the 21st Century. https://doi.org/10.4324/9780203747117-116

Fang, T., Chen, W., Plinke, J., Wheeler, C., & Roberts, A. (2019). Study of the wall adhesive tensile contact of moist iron ore bulk solids. Particuology 50, 67 – 75.

Ferreira, R. F. (2019). Modelos para a previsão do limite de umidade para transporte marítimo de finos de minério de ferro – TML [Thesis, in Portuguese]. Ouro Preto: Escola de Minas da UFOP, 287 p.

Gonçalves, P. C., & Luz, J. A. (2022). Method for quick assessment of cohesive ore flowability. Research, Society and Development, 11(7) [in press].

Herath, B., Albano, C., Anttila, A., & Flykt, B. (1992). Empirical modelling of a dewatering process using multivariate data analysis. Filtration & Separation, 29(1), 57– 44. https://doi.org/10.1016/0015-1882(92)80305-3

Iizuka, E. K. (2006). Análise de tensões em peneiras vibratórias através de modelagem numérica utilizando o método dos elementos finitos e experimentalmente por extensometria. Campinas: Universidade Estadual de Campinas.

Jahani, M., A. Farzanegan, A., & Noaparast, M. (2015). Investigation of screening performance of banana screens using LIGGGHTS DEM solver. Powder Technology 283, 32 – 47.

Jiang, H., Zhao, Y., Duan, C., Liu, C., Wu, J., Diao, H., Lv, P., & Qiao, J. (2017). Dynamic characteristics of an equal-thickness screen with a variable amplitude and screening analysis. Powder Technology, 311, 239 – 246. https://doi.org/10.1016/j.powtec.2017.01.022

Keller, K., & Stahl, W. (1994). Vibration dewatering. Chemical Engineering and Processing: Process Intensification, 33(5), 331 – 336. https://doi.org/10.1016/0255-2701(94)02004-3

Liu, Y., Zhang, Z., Liu, X., Wang, L., & Xia, X. (2021). Ore image classification based on Small Deep Learning Model: Evaluation and optimization of model depth, model structure and data size. Minerals Engineering, 172, 107020. https://doi.org/10.1016/j.mineng.2021.107020

Marín-Rivera, R., Koltsov, A., Araya Lazcano, B., & Douce, J.-F. (2017). Wettability in water/iron ore powder systems: To the universality of the Cassie model. International Journal of Mineral Processing, 162, 36 – 47. https://doi.org/10.1016/j.minpro.2017.02.016

Milhomen, F. de O. (2013). Modelagem de desaguamento em peneira [Dissertation, in Portuguese]. Ouro Preto: Escola de Minas da UFOP, 147 p.

Milhomen, F. de O., & Luz, J. A. M. (2012). Modelling of Dewatering in Screens. In: XIIIth International Mineral Processing Symposium, 2012, Bodrum. Proceedings of XIIIth International Mineral Processing Symposium, 2012 — Bodrum, Turkey. Eskişehir: Eskişehir Osmangazi University. v. 1. p. 893-901.

Mohajeri, M. J., van den Bos, M. J., van Rhee, C., & Schott, D. L. (2020). Bulk properties variability and interdependency determination for cohesive iron ore. Powder Technology, 367, 539-557. https://doi.org/10.1016/j.powtec.2020.04.018

Nabawy, B. S. (2014). Estimating porosity and permeability using digital image analysis (DIA) technique for highly porous sandstones. Arabian Journal of Geosciences, v. 7, p. 889 – 898.

Plinke, J., Prigge, J.-D., & Williams, K. C. (2016). Development of new analysis methods for the characterization and classification of wet sticky ores. Powder Technology, 294, 252 – 258. https://doi.org/10.1016/j.powtec.2016.02.044

Pourmahmood, M., Khanmohammadi, S., & Alizadeh, A. (2011). Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Communication Nonlinear Science Numerical Simulation 16 , 2853 – 2868.

Prado, D. R., da Luz, J. A. M., Milhomem, F. de O., & Paracampos, M. P. (2022). On bed porosity of multisized spheroidal particles/da porosidade de partículas esferoidais polidispersas. Brazilian Journal of Development, 8(2), 14217–14237. https://doi.org/10.34117/bjdv8n2-378

São José, F. de; Teixeira Junior, M. L., & Pereira, C. A. (2017). Análise de rota de peneiramento de minério de ferro na ITM da Namisa S.A — Um estudo de caso. Holos, vol. 4, pp. 299-307 .

Silva, A. P., & Macau, E. E. N. (2012). Sincronização de fase em Sistemas de Osciladores Acoplados. In: XII Workshop de Computação Aplicada - WORCAP 2012. Available at: http://mtc-m16c.sid.inpe.br/ibi/8JMKD3MGP8W/3D9Q6EP; Access: May, 1st. 2022.

Sousa, R., Futuro, A., Fiúza, A., & Mário Machado Leite (2020). Pre-concentration at crushing sizes for low-grade ores processing — Ore macro texture characterization and liberation assessment. Minerals Engineering 147 (2020) 106156.

Srikakulapu, N. G., Cheela, S. S., Bari, V. K., Mukherjee, A. K., & Bhatnagar, A. K. (2021). Effect of polymer flow AIDS on LD iron ore flowability. Powder Technology, 377, 523 – 533. https://doi.org/10.1016/j.powtec.2020.09.023

Wakeman, R. J., & Tarleton, S. (2005). Solid-liquid separation: Principles of industrial filtration. Elsevier.

Yu, C., Wang, X., Pang, K., Zhao, G., & Sun, W. (2020). Dynamic characteristics of a vibrating flip-flow screen and analysis for screening 3 mm iron ore. Shock and Vibration, 2020, 1 – 12. https://doi.org/10.1155/2020/1031659

Downloads

Publicado

21/05/2022

Como Citar

FRADE, A. M.; LUZ, J. A. M. da. Otimização de desaguamento por peneira via controle dinâmico da frequência. Research, Society and Development, [S. l.], v. 11, n. 7, p. e22711729823, 2022. DOI: 10.33448/rsd-v11i7.29823. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29823. Acesso em: 27 jul. 2024.

Edição

Seção

Engenharias