Use of Electrochemical Impedance Spectroscopy (EIE) for monitoring corrosion in concrete with tire residue and Metakaolin and investigation of its microstructure

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.29826

Keywords:

Corrosion; Concrete; Tire residue; Electrochemical Impedance Spectroscopy.

Abstract

This work monitors the corrosion of concrete with tire residue and metholim using the Electrochemical Impedance Spectroscopy (EIE) technique. One of the most frequent pathologies found in reinforced concrete is corrosion of reinforcements that involves risks to the safety of the structure. Among the various techniques to study and evaluate corrosion in this work was chosen the electrochemical impedance spectroscopy (EIE) that characterizes a wide variety of electrochemical systems. Specimens were molded in the trace of 1:2:1:0.60 being a reference (without adding residue), others with the addition of (5% in tire residue, in relation to the kid aggregate) and were also molded (5% and 15% in tire residue and 15% of metacaulim). The choice of the equivalent circuit was different depending on the amount of materials used, for the reference sample a series resistive circuit was used with a second parallel circuit composed of an R resistance and a CPE phase element. For mixtures with tire residue and metemolim, a further R/CPE parallel circuit was added. Micrographs obtained through scanning electron microscopy (SEM) and X-ray dispersive energy spectrometry (EDS) were also performed. The results showed that the sample with 5% tire residue and 15% metakaline residue: presented lower potential values when compared to the other two samples.  The analysis of the EDS paw all samples were observed as common elements of the cement matrix as: Mg, Al, Si, K, Ca and Fe.

References

ABNT NBR 5738. (2015). ABNT NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova (Concrete - Procedure for molding and curing concrete test specimens) [in Portuguese]. Associação Brasileira de Normas Técnicas, 1–12.

Batis, G., Kouloumbi, N., & Pantazopoulou, P. (2005). Corrosion protection of steel in pumice lightweight mortar by coatings. Cement and Concrete Composites, 27(2), 261–267. https://doi.org/10.1016/j.cemconcomp.2004.02.015

Bu, Y., Du, J., Guo, S., Liu, H., & Huang, C. (2016). Properties of oil well cement with high dosage of metakaolin. Construction and Building Materials, 112, 39–48. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.02.173

Carolina, A. N. A., Nadalini, V., & Bispo, A. D. E. O. (2017). Xix Cobreap - Congresso Brasileiro De Engenharia De Avaliações E Perícias. 1–26.

Christensen, B., Coverdale, T., Olson, R., Ford, S., Garboczi, E. J., Jennings, H., & Mason, T. (2005). Impedance Spectroscopy of Hydrating Cement‐Based Materials: Measurement, Interpretation, and Application. Journal of the American Ceramic Society, 77, 2789–2804. https://doi.org/10.1111/j.1151-2916.1994.tb04507.x

da Silva, L. R. R., da Silva, J. A., Francisco, M. B., Ribeiro, V. A., de Souza, M. H. B., Capellato, P., Souza, M. A., Dos Santos, V. C., Gonçalves, P. C., & Melo, M. de L. N. M. (2020). Polymeric waste from recycling refrigerators as an aggregate for self-compacting concrete. Sustainability (Switzerland), 12(20), 1–19. https://doi.org/10.3390/su12208731

Dehwah, H. A. F. (2012). Corrosion resistance of self-compacting concrete incorporating quarry dust powder, silica fume and fly ash. Construction and Building Materials, 37, 277–282. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2012.07.078

Figueiredo, C. P., Santos, F. B., Cascudo, O., Carasek, H., Cachim, P., & Velosa, A. (2014). The role of metakaolin in the protection of concrete against the deleterious action of chlorides O papel do metacaulim na proteção dos concretos contra a ação deletéria de cloretos. Revista IBRACON de Estruturas e Materiais,

(4), 685–708.

Ghorbani, S., Taji, I., Tavakkolizadeh, M., Davodi, A., & de Brito, J. (2018). Improving corrosion resistance of steel rebars in concrete with marble and granite waste dust as partial cement replacement. Construction and Building Materials, 185, 110–119. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.07.066

Hope, B. B., Page, J. A., & Ip, A. K. C. (1986). Corrosion rates of steel in concrete. Cement and Concrete Research, 16(5), 771–781. https://doi.org/https://doi.org/10.1016/0008-8846(86)90051-7

Hu, J. Y., Zhang, S. S., Chen, E., & Li, W. G. (2022). A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials, 325, 126718. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.126718

Mehta, P., & Monteiro, P. (2014). Concreto: Microestrutura, Propriedades e Materiais.

Meyer, Y. A., Menezes, I., Bonatti, R. S., Bortolozo, A. D., & Osório, W. R. (2022). EIS Investigation of the Corrosion Behavior of Steel Bars Embedded into Modified Concretes with Eggshell Contents. Metals, 12(3). https://doi.org/10.3390/met12030417

Meyer, Y. A., Menezes, I., Bonatti, R. S., Bortolozo, A. D., & Riuper, W. (2022). EIS Investigation of the Corrosion Behavior of Steel Bars Embedded into Modified Concretes with Eggshell Contents.

Meyer, Y., Bonatti, R., Bortolozo, A., & Osório, W. (2021). Electrochemical behavior and compressive strength of Al-Cu/xCu composites in NaCl solution. Journal of Solid State Electrochemistry, 25, 1–15. https://doi.org/10.1007/s10008-020-04890-x

Mohamed, I., Aliabdo, A., & Diab, A. (2015). Corrosion behaviour of reinforced steel in concrete with ground limestone partial cement replacement. Magazine of Concrete Research, 67, 1–15. https://doi.org/10.1680/macr.14.00156

Mota, J. M. F., De Oliveira, R. A., & Carneiro, A. M. P. (2016). Durabilidade de argamassas com adição de metacaulim para reforço de alvenaria. Revista Materia, 21(4), 1105–1116. https://doi.org/10.1590/S1517-707620160004.0101

Novaes, A. H., Duarte, F., Riveiro, L. O., & Santos, T. E. (2019). Metodologia Cientifica Teoria e aplicação na educação a distância. In Petrolina - PE Universidade Federal do Vale do São Francisco (Vol. 53, Issue 9). http://portais.univasf.edu.br/dacc/noticias/livro-univasf/metodologia-cientifica-teoria-e-aplicacao-na-educacao-a-distancia.pdf

Osorio, W., Peixoto, L., & Garcia, A. (2009). Electrochemical corrosion behaviour of a Ti‐IF steel and a SAE 1020 steel in a 0.5 M NaCl solution. Materials and Corrosion, 61, 407–411. https://doi.org/10.1002/maco.200905420

Ribeiro, V. A. dos S., Werdine, D., Barbosa, L. F., Oliveira, A. F., & Santana, L. P. (2021). Investigação das propriedades do concreto convencional com adição de resíduos de pneu e metacaulim. Research, Society and Development, 10(5), e2410514463. https://doi.org/10.33448/rsd-v10i5.14463

Ribeiro, D. V. (2015). Uso da Espectroscopia de Impedância Eletroquímica (EIE) para monitoramento da corrosão em concreto armado. RIEM - IBRACON Structures and Materials Journal, 8(4).

Rodrigo Gottschall Criscuolo. (2017). Análise do ciclo de disposição final de pneus em Rio Claro. Universidade Estadual Paulista.

Rossignolo, J. A., & Oliveira, I. L. (2007). Efeito do metacaulim nas propriedades do concreto leve estrutural. Acta Scientiarum. Technology, 29(1). https://doi.org/10.4025/actascitechnol.v29i1.87

Silva, E. P. DA. (2010). Avaliacao de Potencial de Corrosao de Concretos Estruturais Submetidos a Ensaio de Corrosao Acelerado. http://www.deecc.ufc.br/Download/Projeto_de_Graduacao/2010/Edvaldo_Silva_Avaliacao de Potencial de Corrosao de Concretos Estruturais Submetidos a Ensaio de Corrosao Acelerado.pdf

Published

20/05/2022

How to Cite

RIBEIRO, V. A. dos S. .; OLIVEIRA, A. F. .; SANTOS, V. C. dos .; SILVA, L. R. R. da .; TORRES, R. G. .; SOUZA, M. H. B. de . Use of Electrochemical Impedance Spectroscopy (EIE) for monitoring corrosion in concrete with tire residue and Metakaolin and investigation of its microstructure. Research, Society and Development, [S. l.], v. 11, n. 7, p. e18011729826, 2022. DOI: 10.33448/rsd-v11i7.29826. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/29826. Acesso em: 22 nov. 2024.

Issue

Section

Engineerings